background image

Human iPSC-derived prostate organoids with germline BRCA2 

mutation undergo tumorigenic transformations

 

 

Bipul R. Acharya

1, 2#

, George Lawless

1

, Pablo Avalos

1

, Prince Anand

2

, Yesai Fstkchyan

, Shaughn Bell

1

, Maria 

G. Otero

1

, Samuel Guillemette

1

, Zachary Myers

1

, Michael Workman

1

, William J. Catalona

4

, Dan Theodorescu

2, 

3#

, Clive N. Svendsen

1#

 

 

Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA 

Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA 

University of Arizona Comprehensive Cancer Center, Tucson, AZ, USA 

Department of Urology, Northwestern University, Chicago, IL, USA 

#Corresponding Authors 

 

Correspondence to: 

Clive N. Svendsen PhD

Clive.Svendsen@cshs.org

 [Lead Contact] 

Bipul R. Acharya PhD, 

Bipul.Acharya@cshs.org

   

Dan Theodorescu MD PhD, 

theodorescu@arizona.edu

 

 
 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

 

IN BRIEF 

 
In this study, we developed patients’ iPSC-derived prostate organoids (iPROS) with or without a pathogenic 

BRCA2 germline mutation that display human-prostate like morphology and function. MUT_BRCA2 iPROS 

displayed disrupted morphology, early tumorigenic changes, and formed tumors in mice. Upon carcinogen 

exposure, they showed markers of aggressive prostate cancer. This platform models early prostate 

tumorigenesis and enables personalized studies of cancer initiation and therapeutic response. 

 

SUMMARY 

 

The lack of physiologically relevant in vitro prostate models has impeded studies of organ development and 

prostate tumorigenesis. We reprogrammed peripheral blood mononuclear cells (PBMCs) from individuals with 

and without pathogenic-germline BRCA2 mutation (MUT_BRCA2, CON_BRCA2) into induced pluripotent stem 

cells (iPSCs), which showed no differences in morphology, proliferation, or pluripotency markers. 

Differentiation of MUT_BRCA2 iPSCs into prostate organoids (iPROS) using defined growth factors and 

signaling molecules resulted in disrupted morphology, impaired polarity, increased proliferation, and elevated 

prostate-specific antigen (PSA) secretion compared to CON_BRCA2 iPROS. Transcriptomic profiling revealed 

early prostate cancer (PCa) signatures. Upon exposure to dietary carcinogens, MUT_BRCA2 iPROS showed 

further PSA elevation, enhanced proliferation, AMACR upregulation, p63 reducetion are markers of aggressive 

PCa.  In vivo, MUT_BRCA2 iPROS formed tumors in immunodeficient mice. This patient-derived iPROS-

platform recapitulates human-prostate mopphology and function, models early tumorigenesis events, and 

provides a valuable tool for studying PCa biology and enabling personalized drug discovery. 

 

KEYWORDS:

 

In vitro preclinical modelHuman-prostate organoidProstate Cancer (PC), Disease modeling, 

Oncogenic stressors

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

INTRODUCTION 

 

Prostate cancer (PCa) is the most commonly diagnosed cancer in men globally, with over 1.2 million new 

cases and 350,000 deaths annually

1

. In prostate epithelium, genetic and epigenetic alterations, together with 

microenvironmental factors and oncogenic stress, often disrupt androgen receptor signaling, promoting PCa 

development and progression

2,3

. Among these alterations, germline mutations in DNA repair genes—

particularly BRCA2—pose a significant challenge in managing PCa

4

. About 12% of men with metastatic PCa 

harbor such mutations, more than those with localized disease, and are less responsive to treatment

5

Pathogenic-BRCA2 mutation carriers have an 8.6-fold increased PCa risk, especially before age 65, and show 

poorer prognosis even with low-grade tumors. They also experience worse metastasis-free and PCa-specific 

survival following surgery or radiotherapy

6,7,8

. These tumors exhibit aggressive features, higher genomic 

instability, unique molecular profiles, and castration resistance, underscoring the need for translational models 

to guide therapy. 

 

Although rodent models have provided insights into prostate development and cancer, significant anatomical 

and cellular differences with human prostate limit their translational value

9

. The human prostate is organized 

into distinct zones with a balanced basal-luminal cell ratio, whereas rodents have separate lobes and a 

luminal-dominant profile

10

. Additionally, access to fetal and adult prostate tissue is limited, and available cell 

lines are suboptimal for modeling human PCa

11

. Induced pluripotent stem cell (iPSC)-derived organoids offer 

an alternative by enabling the study of organogenesis, tumor initiation, and drug response in genetically 

defined, scalable systems

12

. Unlike tumor-derived organoids, which reflect late-stage disease and harbor pre-

existing heterogeneity, iPSC-based models can recapitulate early oncogenic events by introducing genetic and 

non-genetic changes stepwise. They also allow generation of matched normal controls from the same genetic 

background, enhancing precision oncology applications

13

. Earlier models required rodent urogenital 

mesenchyme (UGM) for prostate specification from human pluripotent cells, limiting their preclinical utility

14,15

Other embryonic stem cell-derived models without UGM don’t show any functional maturity

16

. In our study, we 

differentiated iPSCs generated from human peripheral blood mononuclear cells into prostate-like organoids 

(iPROS) using a rodent-UGM free, chemically defined system. These iPROS recapitulated key morphological, 

transcriptional, and functional features of the human prostate and further matured with vascularization upon 

xenotransplantation into immunodeficient mice

17

 

A major barrier in PCa research is modeling tumor initiation in vitro

18

. Controlled, human-relevant systems to 

define specific drivers of transformation are critical for risk prediction and therapeutic development

19

. To 

address this, we used dietary carcinogens to induce tumorigenesis in iPROS. PhIP, a heterocyclic amine found 

in cooked meat, and MNU, a potent DNA alkylating agent, are known rodent PCa inducers

20,21

. PhIP 

undergoes P450-mediated activation, forming DNA adducts that drive mutations and genomic instability

22

while MNU introduces O6-methylguanine lesions that mispair during DNA replication, causing G-to-A 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

transitions

23

. We exposed iPROS to these carcinogens to model tumorigenic molecular and morphological 

transitions

24

 

Our iPROS system closely mimics human prostate morphology and function, offering an ethical and accessible 

model for studying both organ and cancer development, identifying early biomarkers, and evaluating therapy 

responses. Importantly, it enables investigation into the mechanistic impact of BRCA2 mutations on PCa onset 

and progression, advancing personalized medicine

25

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

RESULTS  
 
Development of prostate organoids (iPROS) from patient iPSCs 

To establish a robust model for prostate organoid differentiation, we began with three control iPSC lines 

derived from PBMCs in the Cedars Sinai iPSC core facility (Table S1). Prostate originates from urogenital 

sinus (UGS)—a caudal extension of the hindgut—formed from definitive endoderm (DE) during late 

embryogenesis (gestational weeks 10 to 12) and completes maturation at puberty

10,26

. Given the known role of 

signaling pathway modulation in embryonic-development, we designed a stepwise differentiation protocol from 

iPSC to DE, hindgut endoderm (HGE), and subsequently, iPROS (Fig. 1A). To efficiently induce DE, we 

treated hiPSC with CHIR99021 (a GSK-3

β

 inhibitor), Activin A, and progressively increasing serum 

concentrations. Since UGS arises from hindgut, we directed DE toward hindgut lineage by activating WNT3A 

and FGF4 signaling

27,28

. FGF10 and WNT10B are essential during prostate development and branching 

morphogenesis, with FGF10 driving early bud formation and WNT10B potentially aiding in prostate 

specification

29

. After 48 hours of HGE induction, we supplemented culture with FGF10 and WNT10B while 

reducing FGF4 to promote prostate-specific specification over the next 48 hours, formed tiny-3D spheroids. 3D 

spheroids were them embedded in Matrigel and cultured them for 5 days with high levels of Dihydroxy 

testosterone (DHT), and andromedin factors FGF7, and FGF10, mimicking the urogenital mesenchyme signals 

that drive in vivo prostate budding and urogenital epithelial (UGE) development

26,30

. Additionally, we included 

SAG (a Sonic Hedgehog agonist) to support UGE differentiation into basal and luminal cells

31

. From day 15 

onwards, until Hayflick limit achieved (~14-16 weeks)

32

, we cultured them in a low-dose DHT medium 

alongside various growth factors, activators, and inhibitors detailed in the Methods. Media formulation was 

informed by prostate-development literature and adapted from previous studies

30,16,33,14,15

. After day 15 

mechanical dissociation of large-organoid-mass (Fig. S1A), round-organoids grow singly for weeks, then form 

complex structures, merging into masses that periodically require mechanical separation. Prostate epithelial 

buds typically emerge from UGS and branch to form glandular ducts comprising luminal and basal layers. 

iPROS recapitulated such ductal structures at around 8-week (Fig. 1B). Immunohistochemistry and 

immunofluorescence (IF) confirmed expression of prostate-specific markers—Androgen Receptor (AR), 

NKX3.1, Prostate Specific Antigen (PSA), and lineage-specific markers: CK8-18 (luminal), p63 (basal), and 

Chromogranin A (neuroendocrine) (Fig. 1C,D and S1B). PSA, a hallmark luminal secretion product

34

appeared in the media by week 6, increasing to ~60 pg/mL by week 12, indicating organ-maturation (Fig. 1E). 

We next validated prostate-specific gene expression in iPROS via RT-qPCR (Fig. 1F). Compared to GAPDH 

(Avg. Cq = 18), target genes AR,  NKX3.1,  p63,  KLK3 (PSA), and CK18 displayed Cq values of 20–35, 

reflecting moderate to high RNA abundance. To assess transcriptomic similarity between iPROS and native 

prostate, we performed mRNA-seq on iPROS and compared the data with 282 normal prostate samples from 

the GTEx Portal

35

. A panel of 30 highly expressed non-ribosomal genes showed expression patterns 

resembling those of adult prostate tissues (Fig. 1G), with 80% transcript overlap confirmed (Fig. 1H

(hypergeometric test, p-value = 4.445679e-10). Further comparisons using two independent adult prostate 

mRNA-seq datasets from GEO revealed ~70% similarity, reinforcing the relevance of the model (Fig. 1H). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

Additionally, we queried the Human Protein Atlas and identified 126 genes showing >4-fold higher expression 

in prostate vs. other tissues (Prost. Tissue Enhanced Genes), with 15 “Prost. Tissue Enriched Genes” uniquely 

elevated in prostate as “tissue-specific genes”. Of these, 68 and 12 genes, respectively, were expressed in 

iPROS, with significant overlap (pValue = 1.115628e-06 and 2.322562e-10, respectively) (Fig. 1I). Lastly, we 

compared iPROS transcript profiles to cell-type specific mRNAs identified by total RNA-seq of adult prostate 

epithelium and stroma

36

. Heatmaps show normalized expression of luminal, basal, neuroendocrine, and 

stromal fibroblast markers in iPROS (Fig. S1C). These demonstrate that we developed a human prostate 

organoid model that mimics cell-specific morphology, gene expression, and organ function. 

 

iPROS with germline BRCA2 mutations manifest tumorigenic morphology and molecular signatures 

Pathogenic-BRCA2 germline variations are a known genetic risk factor for aggressive and metastatic PCa

5

. To 

assess their functional impact on iPROS morphology, gene expression, and PSA secretion, we generated 

three additional iPSC lines from PBMCs of three consenting PCa patients from Northwestern University 

(IRB#STU00018651-MOD0018) harboring pathogenic BRCA2 germline mutations. Fig. 2A  (Fig. S2A and 

Table S1) presents patient identification, mutation types, ISUP_Gleason-grade-group (GG) scores, and H&E-

stained prostatectomy sections. Patients 1 and 2 share same 5946delT mutation in exon-10 but had differing 

GG scores: patient 1 (MUT1_BRCA4i; pT2) had GG2; patient 2 (MUT2_BRCA2A; T2) had GG5. Patient 3 

(MUT1_BRCA3i) had a c.9513_9516 deletion in exon-11, GG5, and a pathology stage of T3bN1M1, with 

lymph node metastasis and histology revealing densely packed glandular lumens with fibrotic stroma. All 

mutations remained present in iPSCs and subsequent iPROS (Fig. 2B). 

iPSC morphology, stemness, or proliferation was not alter by BRCA2 mutations. No changes were observed in 

the fluorescence of stemness markers SOX2, OCT4, and SSE4 (Fig. S2B), nor in OCT4 (Fig. S2C) and SOX2 

(Fig. S2D) gene expression. Although BRCA2 gene expression was reduced (Fig. S2E),  BRCA1 expression 

remained unaffected (Fig. S2F). Ki67 nuclear staining also confirmed unchanged iPSC proliferation (Fig. 

S2G,H). These BRCA2-mutated iPSCs were differentiated into iPROS alongside three wild-type controls for 8 

weeks. Reduced BRCA2 expression persisted in mutant iPROS, consistent with a haploinsufficiency due to 

loss-of-function mutation (Fig. 2C). 

We analyzed eight-week-old iPROS morphology using immunohistochemistry. In 72% of MUT_BRCA2 iPROS, 

we found AR-positive cell layers filling glandular lumens—similar to prostatic intraepithelial neoplasia, a 

dysplasia precursor

37

—compared to only 11% in CON_BRCA2 [pValue < 0.001] (Fig. 2D). MUT_BRCA2 

iPROS displayed thicker, distorted luminal epithelia and increased PSA fluorescence (Fig. 2E), consistent with 

PSA gene regulation by AR and its role as a prostate tumorigenesis marker

38

. PSA release was elevated in 

MUT_BRCA2 (Fig. 2F), along with higher expression of ARNKX3.1p63CK18, and KLK3 (Fig. 2G). 

IF analysis of MUT_BRCA2 iPROS showed increased Ki67-positive nuclei, indicating enhanced proliferation 

(Fig. 2H,I), confirmed by Ki67 flow cytometry (Fig. 2J). Additionally, MUT_BRCA2 iPROS exhibited 

cytoskeletal disorganization, loss of epithelial polarity, and diffuse localization of CK8-18 and p63 (Fig. S2I), 

with elevated and mislocalized p63 suggesting early neoplastic changes

39,40

. Signs of epithelial-mesenchymal 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

transition (EMT) were evident through increased Vimentin (VIM) expression (Fig. 2G), and enhanced 

fluorescence of Vimentin and 

α

-smooth muscle actin (SMA) (Fig. 2K, L), indicating an early EMT onset

41

 

Transcriptomic profile of iPROS with germline BRCA2 mutations correlated with PCa gene expressions 

Transcriptomic profiling of MUT_BRCA2 iPROS offers critical insights into molecular pathways associated with 

PCa development and cellular dysfunctions linked to BRCA2 mutations

42,43

. To explore these differences, we 

performed total-mRNA sequencing on eight-week-old MUT_BRCA2 iPROS from three independent 

differentiation experiments and compared them to CON_BRCA2 total-mRNAseq datasets. Initial transcriptome 

analysis revealed batch effects across differentiation sets (Fig. S3A), commonly observed in iPSC 

differentiation due to stochastic variation in cell-type composition or patient-specific genetic backgrounds. After 

batch correction, unsupervised PCA separated MUT_BRCA2 and CON_BRCA2 iPROS along PC1 and PC4 

(Fig. 3A), as guided by eigencore correlation plots analyzing batch, cell line, and genotype as co-variants (Fig. 

3B). Differential expression analysis (DESeq2: fold-change >1.5, adjP < 0.05) identified 869 DEGs—330 

upregulated and 177 downregulated in MUT_BRCA2 compared to CON_BRCA2 (Fig. 3C). Normalized 

expression showed altered levels signature genes implicated in early PCa; increased expression of AR

FOXA1,  EGFR, AMACR and loss of PTEN and RB1 and others

8,44,42,45

  (Fig. 3D, S3B). GO and KEGG 

geneset-enrichment-analysis on the DEGs identified activated signaling pathway_enrichment in MUT_BRCA2 

iPROS, including glutathione metabolism, receptor clustering, lipid metabolism, and DNA adduct signaling, 

while cell adhesion, ECM anchoring, insulin resistance, and APP catabolism were suppressed—suggesting an 

oncogenic transcriptomic shift (Fig. 3E,F, S3C,D). Hallmark50_NES showed elevated Androgen Response, 

INF, KRAS, and MYC signaling, and loss of apical junctional signaling suggesting Pro-PCa signaling activation 

in MUT_BRCA2 iPROS

46

 (Fig. 3H). 

To assess BRCA2 mutation-specific PCa-gene expression, we analyzed TCGA_PRAD mRNAseq-data

44

 

[TCGA, Cell, 2015]. 42 genes were upregulated in BRCA2-mutated patients (n=5) vs Non-BRCA2 patients 

(n=328), of which 22 overlapped with MUTvs.CON_BRCA2-iPROS DEGs, and 12 upregulated in 

MUT_BRCA2 (p-value = 1.116389e-06) (Fig. 3H). In TCGA-PanCancer mRNAseq-dataset

47

, 4705 DEGs were 

found between 494_PRAD and 51_normal patient-samples; 229 genes overlapped with MUTvs.CON_BRCA2-

iPROS DEGs. 30 most upregulated genes in PRAD were similarly elevated in MUT_BRCA2 iPROS (Fig. 3I). 

Additionally, 394 DEGs were found in Primary_vs._Metastasis-PCa PDXO mRNAseq-dataset

48

, 339 of which 

matched MUTvs.CON_BRCA2-iPROS DEGs (p-value = 1.77289e-10), with the top 30 also upregulated in 

MUT_BRCA2 (Fig. 3J), reinforcing their oncogenic transcriptomic profile. 

To evaluate patient-specific transcriptomes, we analyzed DEGs from each MUT_BRCA2 iPROS line—BRCA4i 

(GG2), BRCA2A (GG5), and BRCA3i (GG5 with metastasis)—against CON_BRCA2. BRCA3i, BRCA2A, and 

BRCA4i had 1362, 862, and 105 DEGs respectively, showing stratified gene-expression by disease stage (Fig. 

3K). When matched these individual DEGs with TCGA_PRADvs.Normal DEGs, BRCA3ivs.CON-DEG and 

BRCA3ivs.CON-DEG had significant gene-overlapping with 413 and 263 respectively, whereas 

BRCA4ivs.CON-DEG showed only 33 gene-overlap, reflecting disease-stage-specific transcriptional fidelity 

(Fig. 3L). Finally, MUTvs.CON_BRCA2-iPROS DEG comparison was done with four PCa-genesets from 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

MSigDB: M6698 (RAMASWAMY_METASTASIS_UP, 67-genes_upregulated in metastatic_vs_primary-PCa), 

M4691 (LIU_PROSTATE_CANCER_UP, 100-genes_upregulated in PCa_vs_benign-tissue), M11504 

(TOMALINS_PROSTATE_CANCER_DN, 41-genes_downregulated in PCa_vs_benign-tissue), and M10319 

(WALLACE_PROSTATE_CANCER_RACE_UP, 305-genes_up-regulated in PCa tissues from African-

American patients compared to those from the European-American patients). For M6698, M4691, and M10319 

DEGs, 36, 55, and 100 DEG-matched genes were upregulated respectively in MUT_BRCA2. Conversely, for 

M11504, 21 genes were downregulated in MUT_BRCA2 (Fig. S3E). These gene-expression similarity across 

these datasets (

50% for most sets) supports a pro-PCa transcriptional environment in MUT_BRCA2 iPROS. 

 

Induction of tumorigenic transformation in iPROS model with dietary carcinogens 

To induce PCa in vitro using our experimental iPROS model, we exposed 8-week-old iPROS to two dietary 

carcinogens—PhIP (2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) and MNU (N-methyl-N-nitrosourea)—

for three weeks (Fig. 4A). Initially, were incubated them with a dose gradient (100 

μ

M to 1 

μ

M over 7 days) of 

PhIP and MNU to optimize cytotoxicity. Based on LDH cytotoxicity assays, two concentrations, 1 

μ

M (PhIP1 

and MNU1) and 5 

μ

M (PhIP5 and MNU5), were selected for three-week exposures in iPROS with and without 

BRCA2 mutations. These treatments resulted in 10–20% cytotoxicity (Fig. S4A). After removing the stressors 

at week-3, no significant differences in proliferation or PSA secretion were observed between stressed and 

control groups. Since carcinogenesis often shows latency, ranging from days to decades depending on 

carcinogen type, dosage, and genetic/immunogenic factors

49

, we extended the culture for an additional 4 

weeks, assessing LDH cytotoxicity at weeks 2 and 4 (Fig. 4B,C). By week 4, control-iPROS treated with higher 

PhIP and MNU concentrations exhibited notable cell death, which was absent in BRCA2-mutant iPROS. 

Unstressed CON_ and MUT_BRCA2 iPROS maintained viability compared to stressed counterparts. 

We hypothesized that prolonged PhIP and MNU exposure caused extensive double-strand breaks (DSBs) 

surpassing homologous recombination (HR) repair capacity, triggering cell death in CON_iPROS. However, 

MUT_BRCA2 iPROS, deficient in HR due to BRCA2 loss of function, compensate by engaging error-prone 

non-homologous end joining (NHEJ)

50

. Post-stress, these mutants showed reduced DSBs, evident from 

decreased 

γ

H2AX fluorescence (Fig. 4D, S4B), a sensitive DSB damage marker

51

. While NHEJ facilitates 

recovery, it is inaccurate, causing indels and genome instability

52

, which promotes survival and 

tumorigenesis

53

. This was corroborated by elevated Ki67 nuclei index (by IF) and higher Ki67 mean 

fluorescence (by flow cytometry) in MUT_BRCA2 iPROS treated with PhIP5 and MNU5 (Fig. 4E,F, S4C). 

Given that PhIP and MNU induce PCa in rodents, we next examined if iPROS could mimic this tumorigenesis 

in vitro. At week 4 post-stress, PSA levels were elevated (Fig. 4G). Diagnostic PCa detection using tissue 

microarrays often employs a 3-antibody panel: AMACR (

α

-methylacyl coenzyme A racemase), 34

β

E12 (high 

molecular weight cytokeratin), and p63

54

. AMACR is overexpressed in PCa

55

, while loss of 34

β

E12 and p63 

supports diagnosis. Mutant iPROS treated with PhIP5 and MNU5 exhibited increased AMACR staining and 

reduced p63, suggesting PCa-like features (Fig. 4H). RT-qPCR showed upregulation of AR,  AMACR,  ERG

TMPRSS2, and FOXA1, and downregulation of p63

56,57,58

  (Fig. 4I), indicating tumorigenic transformation in 

MUT_BRCA2 iPROS. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

Upregulated AR and its downstream genes suggest AR-driven oncogenesis. Accordingly, PhIP5- and MNU5-

stressed organoids were treated with 5 

μ

M enzalutamide, an AR inhibitor

59

, for 2 weeks post-stress. This 

treatment elevated cytotoxicity and reduced proliferation in MUT_BRCA2 iPROS (Fig. S4D,E). Additionally, 10 

μ

M Olaparib, a PARP inhibitor inducing synthetic lethality by targeting NHEJ in MUT_BRCA2 iPROS cells

60

caused selective cytotoxicity and increased 

γ

H2AX staining these iPROS (Fig. S4F,G). These findings affirm 

the iPROS model as a reliable human-relevant in vitro platform for studying prostate tumorigenesis. 

 

Xenotransplanted BRCA2 mutant iPROS in immunodeficient mice promote tumorigenesis

 

Hayflick limits the long-term expansion of organoids in vitro, making it difficult to fully model tumorigenesis

32

Moreover, tumor-stromal interactions and vascularization are critical for tumor progression, maturation, and 

metastasis

61

. iPROS cultures ceased expanding after 14–16 weeks and began to die (data not shown); with 

PhIP and MNU 3 weeks treatment, this extended up to 18-22 weeks before they die out. To support further 

growth in a host environment with a more favorable tissue microenvironment, we conducted a xenograft study 

by injecting iPROS either subcutaneously or into the sub-renal capsules of 6–8-week-old NOD scid gamma 

mice (Fig. 4J). We injected CON_ and MUT_BRCA2 iPROS, a human tumor cell line (positive control, human-

urinary-bladder cancer cell-line 5637), and Matrigel alone. The renal capsule is an advantageous ectopic site 

for prostate tissue xenografting

62,15

Four weeks post-injection, large tumors formed in mice receiving the tumor cell line subcutaneously, and three 

small tumors developed in MUT_BRCA2-iPROS-injected mice (Fig. 4K). Subcutaneous tumor growth curves 

were tracked for 12 weeks, after which mice were euthanized and tumors collected. The positive control mouse 

reached a tumor-size of 300 mm³ by week 6 and was euthanized earlier. No tumors formed in CON_BRCA2-

iPROS injected mice. Alongside hematoxylin & eosin (H&E) staining (Fig. 4L, S4H) we identified the 

integration of both human-tumor cells and iPROS cells into the mouse subcutaneous tumor using human-

specific anti-mitochondria antibody (AMA, 113-1), which stains explicitly human mitochondria (a specifc 

“spaghetti-like” staining) and does not cross-react with mouse or rat tissues (Fig. 4L)

63

. Only MUT_BRCA2 

iPROS tumors expressed NKX3.1, a prostate-specific marker. In sub-renal capsule xenografts, LTL-negative

64

 

(kidney marker), but NKX3.1 positive, large-mass outgrew only in MUT_BRCA2 iPROS and positive control-

tumor cell injected kidneys (Fig. 4M, S4H). PCa markers ERG and PSMA fluorescence were elevated in 

MUT_BRCA2 iPROS-transplanted kidneys (Fig. S4M), supporting in vivo tumorigenesis by MUT_BRCA2 

iPROS. Positive control, CON_ and MUT_BRCA2 iPROS transplated kidney sections were positive for AMA 

confirming human prostate cell integration (Fig. 4N).  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

DISCUSSION 

Patients’ iPSC-derived organoids are emerging as valuable tools for modeling organ development and disease 

progression, including cancers

65

. While prior models with human iPSCs showed prostate-like organoids, these 

were reliant on co-culture with rodent UGM

14,15

, reducing their utility in pre-clinical studies. In this study, we 

developed a pre-clinical, rodent cell–free prostate organoid (iPROS) model that reliably recapitulates human 

prostate organ morphology, gene expression, and function

12

. iPROS with BRCA2 risk variants displayed 

functional implications in morphological and molecular plasticity during prostate tumorigenesis

66

. Our results 

demonstrate the potential of iPROS as an effective platform for BRCA2-related PCa risk prediction, 

personalized biomarker evaluation, and therapeutic screening. iPROS differentiation from iPSCs followed a 

well-characterized protocol mimicking prostate glandular development

26

, enabling detailed mapping of 

epithelial-mesenchymal interactions from definitive endoderm through hindgut, prostate progenitor, and 

epithelial budding stages—circumventing the limitations of adult tissue-derived organoids. 

The use of defined small molecules and pathway modulators enabled generation of 3D prostate organoids 

mimicking prostate lobes and ducts, showing both basal and luminal epithelial structures. iPROS expressed 

key prostate markers including Androgen Receptor (AR), NKX3.1, and p63, critical for prostate development. 

PSA secretion increased over time indicating androgen responsiveness and functional maturation. Detection of 

PSA confirmed the ability of iPROS to recapitulate key physiological features in vitro. Importantly, iPROS 

reproduced human prostate-like architecture, including luminal, basal, and neuroendocrine epithelial lineages, 

as confirmed by IF/Immunohistochemistry showing CK8-18, p63, and Chromogranin A expression. 

Transcriptomic analysis further validated physiological relevance by aligning closely with human adult prostate 

tissue gene profiles. 

Pathogenic  BRCA2 mutations are common in aggressive, metastatic PCa with high-GG tumors. We derived 

iPSCs from three patients carrying pathogenic BRCA2 mutations with different GG and stages, and 

differentiated them into iPROS. This enabled us to study the impact of germline BRCA2 mutations on organoid 

development and tumorigenesis

10

. As a tumor suppressor, BRCA2 maintains DNA integrity during cell division. 

Its mutation impairs DNA repair, leading to genomic instability and uncontrolled proliferation. These 

deficiencies can disrupt other genes linked to growth and survival, promoting tumorigenesis

67

. Our findings 

support this: BRCA2 mutations aligned with altered prostate epithelial morphology and gene expression but did 

not affect iPSC proliferation or stemness, suggesting their influence manifests post-differentiation. 

Increased Vimentin and SMA levels, along with disrupted epithelial polarity in MUT_BRCA2 iPROS, are 

consistent with EMT transition, indicating predisposition to tumorigenic transformation. Transcriptomic profiling 

revealed enrichment of PCa signature genes in MUT_BRCA2 iPROS. GSEA showed pro-oncogenic AR, MYC, 

MAPK, and Hippo signaling upregulation, cell-peripheral signaling, cell-cell adhesion loss, and extracellular 

matrix (ECM) remodeling, all hallmarks of prostate-epithelial tumorigenesis

42,68

. MUT_BRCA2 iPROS shared 

significant transcriptomic overlap with prostate adenocarcinoma (PRAD), further supporting its relevance as a 

disease model. The varying degrees of transcriptomic similarity between different GG-MUT_BRCA2 iPROS 

and TCGA_PRAD datasets underscore the iPROS model’s potential to study primary and advanced PCa in a 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

patient-specific context

68

. Finally, in vivo xenotransplantation confirmed higher tumorigenic potential of BRCA2-

mutated iPROS in both subcutaneous and renal capsule microenvironments. 

We found that PhIP and MNU, cause genotoxic stress and induce PCa in rodent models

20,21

, also induced DNA 

damage in iPROS. Despite cytotoxic stress, unrepaired or mismatch-repaired DNA allowed MUT_BRCA2 

iPROS to survive, intensifying their oncogenic potential. Importantly, the carcinogen-treated iPROS responded 

like human PCa: elevated expression of PCa-specific genes (ARAMACRERGTMPRSS2) and loss of the 

basal marker p63 indicated onset of aggressive-PCa transformation. Furthermore, iPROS with BRCA2 

mutations exhibited increased sensitivity to AR inhibitor enzalutamide and PARP inhibitor olaparib, confirming 

their transformation state and dependence on AR signaling and DNA repair pathways. 

In conclusion, we developed patient-specific prostate organoids (iPROS) that mimic human prostate 

morphology and function. iPROS with pathogenic-BRCA2 mutation forms tumors in vivo, and show dietary-

carcinogen vulnerability, providing a robust preclinical platform to study mutation-specific-PCa and advance 

precision oncology therapies. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

ACKNOWLEDGEMENTS 

The authors thank Dr. Wong-Valencia for help with iPROS dissociation, Fangyuan Qu and Yongqi Lin for 

mouse care. Dr. Sunyoung You

 

for discussing RNAseq data analysis, Dr. Soshana Svendsen for critical 

reading of the manuscript. This work was supported by an award from the Urological Research Foundation to 

CNS and DT, and institutional support to BRA (Donna and Jesse Garber Award for Cancer Research, 2025) 

and CNS from Cedars Sinai Mecical Centre. 

 

AUTHOR CONTRIBUTIONS 

CNS. And DT. conceived project. BRA conceptualized/developed iPROS and oncogenesis model, designed 

experiments, and wrote manuscript with CNS. BRA, CNS, DT, and WJC edited manuscript. BRA performed 

experiments with GL, PA, PA, MGO, YF, SG, and ZM. BRA, MJW, and SB analyzed RNAseq data. 

 

DECLARATION OF COMPETING INTERESTS 

Authors declare a patent application filling related to this work. 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

FIGURE LEGENDS 

 

Figure 1: Differentiation and characterization of iPROS. 

(A) Prostate organoid differentiation-schema from 

iPSC_to_iPROS. (B) Representative images of iPSC and iPROS at day 60. (C) Chromogenic images showing 

AR, NKX3.1, CK8/18, p63, and CgA. (D) IF-images showing AR, NKX3.1, CK8/18, p63, PSA, and PSMA with 

DAPI. (E) Quantification of PSA release over weeks. (F) RT-qPCR Cq plot for prostate-specific genes. (G

Heatmap of 30 highly expressed prostate-specific genes from GTEx. (H–I) Venn diagrams showing gene 

overlaps of iPROS with GTEx, GEO, and Human Protein Atlas. Significance tested with ANOVA (E); **p < 

0.01, and ****p < 0.0001. 

 

Figure 2: Morphological and Molecular Plasticity in iPROS with BRCA2 mutations.

 (A) H&E staining of 

prostatectomy sections from 3-patients; black-arrows indicate normal/tumor sites. (B) Sanger-sequencing 

showing BRCA2 mutations in iPSCs and iPROS. (C) qPCR of BRCA2 expression in CON_ and MUT_BRCA2 

iPROS. (D) Chromogenic images of AR. (E) IF-images of PSA and F-actin. (F) PSA release at week-8. (G

qPCR of prostate-specific genes in CON_ and MUT_BRCA2 iPROS. (H–I) Ki67 nuclei-index; image and 

quantification. (J) Flow cytometry of Ki67 mean fluorescence. (K–L) IF-images of Vimentin and 

α

-SMA. 

Significance tested with pairwise comparisons (t-test with Welch correction; C,D,I,G). *p < 0.05, **p < 0.01, ***p 

< 0.001, ****p < 0.0001. 

 

Figure 3: Transcriptomic characterization of iPROS with BRCA2 mutations.

 (A–B) PCA and eigencore 

correlation plots showing variance among CON_ and MUT_BRCA2 iPROS. (C) Volcano plot of top 10 

significantly altered genes. (D) Normalized expression of prostate- and PCa-specific genes. (E–G) GSEA 

analysis for GO, KEGG, and Hallmark50 pathways with significant DEGs of MUT_BRCA2 vs CON_BRCA2 

iPROS. (G) Pie chart of transcript overlap with MSigDB PCa gene sets. (H–J) Heatmaps of PCa-specific genes 

from public-PCa-mRNAseq-datasets. (K–L) Pie chart showing DEGs of each MUT_BRCA2 vs CON_BRCA2, 

Venn diagrams comparing them with TCGA_PRAD datasets. 

 

Figure 4: Neoplasia induction in iPROS with dietary carcinogens.

 (A) Structures of PhIP and MNU. (B–C

LDH assay shows cytotoxicity in CON_ and MUT_BRCA2 iPROS after 2- and 4-week of PhIP (B) and MNU 

(C) withdrawal. (D

γ

H2AX flowcytometry indicating DNA damage after a 3-week exposure. (E) Representative 

IF-images of Ki67-positive nuclei in 15-week-old iPROS post-treatment. (F) Ki67 flow cytometry after 4-week 

stress-withdrawal. (G) PSA release comparison. (H) Immunofluorescence for AMACR and p63. (I) qPCR of 

PCa-specific genes. (J) Illustration of subcutaneous and sub-renal capsules xenograft into NOD scid gamma 

mice (K) Tumor growth curve shows progressive size increase over 12 weeks post-injection. (L) H&E and IF-

images of AMA and NKX3.1 in subcutaneous-tumors. (M–N) Renal capsule engraftment showing H&E and IF 

with LTL, NKX3.1, and AMA. Scale-bar: 100 

μ

M (L) and significant 2-way ANOVA (multiple comparisons); *p < 

0.05, **p < 0.01, ****p < 0.0001. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

SUPPLEMENTAL INFORMATION 

Document S1: Key resources table, Supplementary-Figure Legends, Materials and Methods  

Table S1: iPSCs details. 

 

STAR METHODS 

  KEY RESOURCES TABLE 

 RESOURCE 

AVAILABILITY 

o

 Lead 

contact 

o

 Materials 

availability 

o

  Data and code availability 

  SUPPLEMENTARY TABLE:  Experimental models; iPSC cell line details 

 METHOD 

DETAILS 

o

  Differentiation of iPSCs to iPROS 

o

  RNA Extraction and Quantitative PCR Analysis  

o

  Immunocytochemistry, Immunohistochemistry, image acquisition, and analysis 

o

  iPROS xenografts in mice 

o

  RNA processing, mRNA-sequencing, and quality control 

  QUANTIFICATION AND STATISTICAL ANALYSIS 

o

  RNA-seq data processing and differential expression testing 

o

  Statistical analysis and significance tests 

 

KEY RESOURCES TABLE 

REAGENTS OR RESOURCE 

SOURCE 

IDENTIFIER 

Antibodies (anti-Human) 

 

(Catalog No#) 

Anti-Androgen Receptor 

BD biosciences 

554224 

Anti-NKX3.1 

Abcam and R&D Systems 

ab196020, AF6080 

Anti-Prostate Specific Antigen  

Biogenix and R&D Systems 

MU014-5UC, AF1344 

Anti-p63 

Abcam and R&D Systems 

ab124762 and AF1916 

Anti-PSMA/GCPII  

Proteintech 

13163-1-AP 

Anti-Cytokeratin 8/18 

ThermoFisher 

MA5-14088 

Anti-AMACR Monoclonal Antibody 
(2A10F3) 

ThermoFisher MA5-15360 

Anti-

 

Chromogranin A Monoclonal 

Antibody (PHE5) 

ThermoFisher MA5-13281 

Anti-

α−

smooth muscle Actin  

Abcam ab7817 

Anti-Mitochondrial Antibody 

Abcam 

Ab92824 

Anti-ERG antibody [EPR3864] 

Abcam 

ab92513 

Anti-

 

PSMA/GCPII Monoclonal 

antibody 

Proteintech 66678-1-Ig 

Anti-Vimentin Antibody 

R&D Systems 

MAB2105 

Anti-Ki67/MKI67 Antibody 

R&D Systems 

AF7617 

Lotus tetragonolobus Lectin (LTL) - 
Biotinylated 

Vector Laboratories 

B-1325-2 

CoraLite®594-Phalloidin (red) 

Proteintech 

PF00003 

Chemicals & Kits 

 

 

Human Recombinant Activin A 

R&D Systems, Stem Cell Technologies 

338-AC-010, 78132 

Human Recombinant FGF10 

R&D Systems, Stem Cell Technologies 

345-FG-025 

Human Recombinant EGF 

R&D Systems, Stem Cell Technologies 

236-EG-200, 78006 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

Human recombinant Noggin 

R&D Systems, Stem Cell Technologies 

3344-NG-050, 78060 

Human recombinant WNT10B 

R&D Systems 

7196-WN-010 

Human Recombinant bFGF (FGF2) 

Stem Cell Technologies 

78003 

Human Recombinant FGF-4 

Stem Cell Technologies 

78103 

Human Recombinant R-Spondin1 

R&D Systems, Stem Cell Technologies 

4645-RS-100,  

mTeSR™1 Complete Kit 

Stem Cell Technologies 

85850 

mTeSR™ Complete Plus Kit 

Stem Cell Technologies 

100-1130 

ReLeSR™ Stem 

Cell 

Technologies 

100-0483 

ACCUTASE™ Stem 

Cell 

Technologies  07922 

A83-01 Stem 

Cell 

Technologies 

72022 

SB202190 Stem 

Cell 

Technologies 

72632 

Prostaglandin E2 

Stem Cell Technologies 

72192 

Insulin-Transferrin-Selenium (ITS -G) 
(100X) 

ThermoFisher Scientific 

41400045 

Human Wnt-7a Protein (120-31-
15UG) in Functional 

ThermoFisher Scientific 

120-31-15UG 

Advanced DMEM/F-12 

ThermoFisher Scientific 

12634010 

RPMI 1640 

ThermoFisher Scientific 

11875093 

HEPES (1 M) 

ThermoFisher Scientific 

15630080 

Critical commercial assays 

 

 

CyQUANT™ LDH Cytotoxicity Assay 

ThermoFisher Scientific 

C20300 

Human PSA (Total)/KLK3 ELISA Kit 

Invitrogen EHKLK3T 

MNU (N-Nitroso-N-methylurea) 

Selleck Chemicals 

E0158 

Smoothened Agonist (SAG) HCl [2 
mg] 

Selleck Chemicals 

S7779 

PhIP (2-Amino-1-methyl-6-
phenylimidazo(4,5-b)pyridine) 

Millipore Sigma 

SMB01383 

ATRA Millipore 

Sigma  R2625 

5

α

-Dihydrotestosterone (DHT) 

solution 

Millipore Sigma 

D-073-1ML 

CHIR-99021 monohydrochloride 

MedChemExpress 

CT99021 

Enzalutamide (MDV3100) 

MedChemExpress 

HY-70002 

Olaparib (AZD2281; KU0059436) 

MedChemExpress 

HY-10162 

Software and Algorithms 

 

 

R Project for Statistical Computing  

CRAN RRID:SCR_001905 

tidyverse CRAN 

RRID:SCR_019186 

DESeq2 Bioconductor 

RRID:SCR_015687 

edgeR Bioconductor 

RRID:SCR_012802 

biomaRt  

Bioconductor 

RRID:SCR_019214 

tximport Bioconductor 

RRID:SCR_016752 

PCAtools Bioconductor 

 

 

Salmon Bioconductor 

RRID:SCR_017036 

STAR aligner 

Github 

RRID:SCR_004463 

GSEA_ClusterProfiler Bioconductor 

RRID:SCR_001905 

Samtools htslib.org 

RRID:SCR_002105 

DAVID Bioinformatics Resource 

david.ncifcrf.gov 

RRID:SCR_001881 

jVenn Bioconductor 

RRID:SCR_016343 

qPCR primers list 

 

 

Human Genes 

Direction (5'- 3'), F = Forward, R= Reverse 

 

hSOX2-F GGGAAATGGGAGGGGTGCAAAAGAGG IDT 

Technologies 

hSOX2-R TTGCGTGAGTGTGGATGGGATTGGTG 

IDT 

Technologies 

hRUNX1-F CCCTAGGGGATGTTCCAGAT 

IDT 

Technologies 

hRUNX1-R TGAAGCTTTTCCCTCTTCCA 

IDT 

Technologies 

hSOX17-F CTCTGCCTCCTCCACGAA 

IDT 

Technologies 

hSOX17-R CAGAATCCAGACCTGCACAA IDT 

Technologies 

hFOXA2-F GCACTCGGCTTCCAGTATGC 

IDT 

Technologies 

hFOXA2-R GCGTTCATGTTGCTCACGGA 

IDT 

Technologies 

hP63-F GTGAGCCACAGTACACGAACC 

IDT 

Technologies 

hP63-R GAGCATCGAAGGTGGAGCTGG 

IDT 

Technologies 

hAR-F TGTCCATCTTGTCGTCTTCG 

IDT 

Technologies 

hAR-R ATGGCTTCCAGGACATTCAG 

IDT 

Technologies 

hNKX3.1-F GGCCTGGGAGTCTTTGACTCCACTAC 

IDT 

Technologies 

hNKX3.1-R ATGTGGAGCCCAAACCACAGAAAATG 

IDT 

Technologies 

hCK18-F CAGCAGATTGAGGAGAGCAC 

IDT 

Technologies 

hCK18-R TCGATCTCCAAGGACTGGAC 

IDT 

Technologies 

hRPL13-F GTCTCCACGTGGTGTGTTTC 

IDT 

Technologies 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

hRPL13-R CAGGGCTTGGACTGTCTTTC 

IDT 

Technologies 

hVimentin-F TTGACAATGCGTCTCTGGCAC 

IDT 

Technologies 

hVimentin-R CCTGGATTTCCTCTTCGTGGAG 

IDT 

Technologies 

hKLK3-F CGCAAGTTCACCCTCAGAAGGT 

IDT 

Technologies 

hKLK3-R GACGTGATACCTTGAAGCACACC 

IDT 

Technologies 

hBRCA1-F GAAACCGTGCCAAAAGACTTC 

IDT 

Technologies 

hBRCA1-R CCAAGGTTAGAGAGTTGGACAC 

IDT 

Technologies 

hBRCA2-F CACCCACCCTTAGTTCTACTGT 

IDT 

Technologies 

hBRCA2-R CCAATGTGGTCTTTGCAGCTAT 

IDT 

Technologies 

hTMPRSS2-F TATGAGAACCACGGGTATCAGT 

IDT 

Technologies 

hTMPRSS2-R CGTTGTAATCCTCGGAGCATACT 

IDT 

Technologies 

hAMACR_F ACGTCTTGCTCGAGATGTGA 

IDT 

Technologies 

hAMACR_R AATCCAGCAGGTCAGCAAAG 

IDT 

Technologies 

hERG_F CGCAGAGTTATCGTGCCAGCAGAT 

IDT 

Technologies 

hERG_R CCATATTCTTTCACCGCCCACTCC 

IDT 

Technologies 

hFOXA1_F GCTGGACTTCAAGGCATACGA 

IDT 

Technologies 

hFOXA1_R GCTGGACTTCAAGGCATACGA 

IDT 

Technologies 

hPAcP_F CGGGATCCCGATGAGAGCTGCACCCCTC 

IDT 

Technologies 

hPAcP_R CGGGATCCCGCTAATCTGTACTGTCCTCAGT 

IDT 

Technologies 

POU5F1-F AAGCTGGAGAAGGAGAAGCTG 

IDT 

Technologies 

POU5F1-R AATAGAACCCCCAGGGTGAG 

IDT 

Technologies 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

RESOURCE AVAILABILITY 

Lead contact 

Further information and resource requests should be directed to the lead contact, Clive Svendsen 

(

clive.svendsen@cshs.org

). 

Materials availability 

The iPSC lines used in this study can be searched and selected through the catalog at the Cedars-Sinai 

Biomanufacturing Center (

https://biomanufacturing.cedars-sinai.org

) for order fulfillment.  

Data and code availability 

All datasets generated during and/or analyzed during the current study and the R-codes are available upon 

request. 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

SUPPLEMENTARY TABLE 

iPSC Line 

Mutation

Code 

used in 

Manuscri

pt 

Age at 

PBMC 

Draw  

Prostate 
Cancer 
Diagnosi

Gleaso
n Grade 
Group  
(ISUP) 

Path 
Stage if 
available 

Lymph 
Node 
Metastas
es 

Distant 
Metastas
es 

Curr.  
Status 

Cancer 
aggressiven
ess 

0002iBRCA2 c.5946de

lT 

BRAC2A 

68 1  5  T2 

0 NED High 

N0U3iPRC c.9513_9

516del 

BRAC3i 59 

5  T3bN1M1  1 

 

 

High 

C0S4iPRC c.5946de

lT 

BRAC4i 70 

pT2 

0  NED 

Low 

CSEDI022iC

RT 

NA CONT.1 79  0  NA  NA NA NA 

NA NA 

CSEdi028CR

NA CONT.2 79  0  NA  NA NA NA 

NA NA 

CSEdi037iCR

NA CONT.3 80  0  NA  NA NA NA 

NA NA 

Table S1: List of lines with identifier and other details used in the current study  

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

MATERIALS AND METHODS 

iPS Cell Lines: 

All iPSC lines with BRCA2 mutations were generated at the iPSC Core at Cedars-Sinai 

Medical Center. Patients peripheral blood mononuclear cells (PBMCs) were transfected with a non-integrating 

episomal plasmid expressing seven factors: OCT4, SOX2, KLF4, L-MYC, LIN28, SV40LT, and p53 shRNA 

(pEP4 E02S ET2K, pCXLEhOCT3/4-shp53-F, pCXLE-hUL, and pCXLE-hSK). All cell lines and protocols in 

this study were conducted in compliance with the guidelines approved by the Stem Cell Research Oversight 

Committee (SCRO) and Institutional Review Board (IRB) under IRBSCRO Protocols Pro00032834 (iPSC Core 

Repository and Stem Cell Program) and Pro00021505 (Svendsen Stem Cell Program). Three existing male 

control iPSC lines with wild-type BRCA2 were selected from the Cedars-Sinai Biomanufacturing Center iPSC 

Core. These control lines were reprogrammed from healthy donor PBMCs, namely CSEDi022A, CSEDi028A, 

and CSEDi037A. The presence of BRCA2 heterozygous mutations in these iPSC lines was confirmed through 

DNA sequencing analysis. BRCA2 mutations identified were specific to each patient line: CSN0U3iPRC 

(c.9513_9516del, located in exon 11), CS0002iBRCA2 (c.5946delT, located in exon 19), and CSC0S4iPRC 

(c.5946delT, located in exon 19). These mutations aligned with the patients’ clinical diagnoses. 

 

iPSC Culture: 

Control and BRCA2-mutated iPSCs were cultured in mTeSR®Plus medium on growth factor-

reduced Matrigel™ Matrix (BD Biosciences)-coated plates at 37°C in a 5% CO2 incubator. When human iPSC 

colonies reached 70–90% confluence, they were washed with Versine and gently lifted with ReLeSR 

(STEMCELL), and then replated at a 1:6 ratio. All cell lines were tested for mycoplasma contamination 

monthly. 

 

Differentiation of iPROS from iPSCs: 

iPROS differentiation from iPSCs involved three major steps: iPSC to 

Definitive Endoderm (DE) differentiation, followed by differentiation hindgut endoderm (HG) and prostate 

progenitor specification in 3D culture, and finally the induction of AR signaling in progenitor population for 

further differentiation. 

DE Differentiation (3-day Protocol): 

iPSCs growing in mTeSR®Plus medium until DE induction. In a confluent 

well of a 6-well plate (approximately 1.2x10^6 cells), cells are dissociated using Accutase 

63

 in mTSer1 media 

containing 10 

μ

M Y-drug and plated in a 24-well plate pre-coated with Matrigel (0.25-0.5 mg/ml). On Day 1, the 

medium is replaced with 1 mL of DE media (RPMI, 1x P/S, 1x L-glutamine, 3 

μ

M Chir99203, and 100 ng/ml 

Activin). On Day 2, the media is changed to a fresh Day 2 formulation (RPMI, 1x Pen/Strep, 0.2% FBS, 100 

ng/ml Activin A), and on Day 3, the media is switched to Day 3 media (RPMI, 1x Pen/Strep, 2% FBS, 100 

ng/ml Activin). 

Hindgut Endoderm & Prostate Progenitor Differentiation (2+2 Days Protocol): 

Following DE differentiation, the 

media is replaced with HG media for 4 days, refreshing the media daily. On Days 1 and 2, cells are exposed to 

AdvDMEM/F12 (with 200 mM L-glu, 1x P/S, 15 mM Hepes) supplemented with 2% FBS, 500 ng/ml FGF4, and 

500ng/ml WNT3B. On Days 3 and 4, the media is changed to a formulation containing 2% FBS, 200 ng/ml 

FGF4, 500 ng/ml FGF10, and 500 ng/ml WNT10B. At this stage, 3D aggregates form beneath the monolayer, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

which are collected by scraping, spun at 200g for 3 minutes, and preferably separated as 3D aggregates for 

subsequent steps. 

Inducing of AR Signaling: 

Matrigel is prepared by adding 20 

μ

l of 1x B27, 1.5 

μ

l of 100 

μ

g/ml EGF, and 1.5 

μ

of 100 

μ

g/ml Noggin to 1 ml of stock Matrigel (~10 mg/ml). The cell pellet is mixed 1:1 with this Matrigel 

cocktail, with each drop of the mixture not exceeding 70 

μ

l (ideally 50 

μ

l) per well of a 24-well plate. After 3-4 

minutes in the hood, the plate is flipped upside down, allowing the cells to hang in the Matrigel drop for 9 

minutes in the incubator. Following this, 500 

μ

l of media is added to each Matrigel dome well. For the next 5-7 

days these prostate progenitors were cultured in media consisting of AdvMEM12 (with 200 mM L-glu, 1x P/S, 

15 mM Hepes), 1x B27, and 2% ITS, along with 500 ng/ml R-Spondin1, 100 ng/ml Noggin, 100 ng/ml EGF, 10 

nM ATAR, 1.5 

μ

M DHT, 2 

μ

M CHIR-99021, 10 nM SAG (SHH agonist), and 100 ng/ml FGF10. Media should 

be replaced every third day. 

Long-term iPROS Culture: 

From Week 2 onwards, organoids are maintained in a modified media formulation: 

AdvMEM12 with 200 mM L-glu, 1x P/S, 15 mM Hepes, 1x B27, 2% ITS, 1.25 mM N-acetylcysteine, 1 

μ

prostaglandin E2, 10 mM nicotinamide, 0.5 

μ

M A83-01 (TGF

β

/Smad inhibitor), 10 

μ

M SB202190 (p38 MAPK 

inhibitor), 500 ng/ml R-Spondin1, 100 ng/ml Noggin, 100 ng/ml EGF, 100 ng/ml FGF2, 100 ng/ml FGF10, 10 

nM ATAR, 10 nM DHT, 10 nM SAG, 2 

μ

M CHIR-99021, and 10 

μ

M Y-drug. After Week 3, Y-drug and ATAR 

are removed, but they should be reintroduced when organoids are split.  Organoids were passaged every 2-3 

weeks. To passage, organoids are dissociated with Express-TrypLE to single cells, counted, and mixed with a 

1:1 Matrigel cocktail to regrow organoids with even cell numbers. This method ensures a consistent number of 

organoids per dome. 

Cryopreservation and Revival: 

For cryopreservation, Matrigel is removed, and Cryostor media is added to the 

organoids. After mechanical disruption with a pipette, the organoids are frozen with Cryostor cell freezing 

media (STEMCELL). For the revival, Cryostor is replaced with the 1:1 Matrigel cocktail, and after one week, 

organoids can be re-split and counted to ensure even distribution. 

 

RNA Extraction and Quantitative PCR Analysis

Total RNA was extracted from cells using the QIAGEN 

Rneasy Mini Kit, following the manufacturer’s instructions. One microgram of the purified RNA was then used 

to synthesize cDNA using the Quantitect Reverse Transcription Kit (QIAGEN). Quantitative real-time PCR was 

carried out with SYBR Select Master Mix (Applied Biosystems). Gene expression levels were normalized to 

GAPDH and RPL13 housekeeping genes expressed as fold changes relative to control samples. All 

experiments were conducted in triplicate, and the primers used are listed in the reagent table. At least three 

independent experiments were performed for all genes with three technical repeats. 

 

Fluorescence-Immunohistochemistry of iPROS and Immunocytochemistry of iPSC Cells:

  iPROS were 

fixed in 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS; with Ca2+ and Mg2+) for one hour at 

room temperature (RT), then rinsed three times with PBS. After fixation, they were cryoprotected overnight in 

30% sucrose at 4°C and embedded in OCT compound (Tissue-Tek). Frozen sections, 10 µm thick, were cut 

using a cryostat, mounted on glass slides, and stored at –20°C. Before staining, sections were rehydrated, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

permeabilized, and blocked with PBS with 0.5% Triton X-100 and 10% normal human serum in PBS for one 

hour at room temperature. Sections were then incubated overnight at 40C with primary antibodies diluted the 

blocking solution containing 0.05% Triton X-100 (PBS-T). The secondary antibody was diluted (1:1000) with 

5% Normal Donkey Serum in PBS-T for 1 hour. iPSCs were fixed in 4% PFA in PBS (with Ca2+ and Mg2+) for 

20 min at RT. This was followed by permeabilization for 5 minutes with 0.25% Triton X-100, then blocking with 

5% Normal Donkey Serum in PBS-T for two hours in RT, and then the secondary antibody was diluted 

(1:1000) in 5% Normal Donkey Serum in PBS-T for 1 hour. Nuclei were counterstained with DAPI (4’,6-

diamidino-2-phenylindole). Finally, the slides were mounted with antifade mounting media and dried before 

imaging with a Nikon-Ti Confocal microscope. Each image represents at least three independent experiments. 

The primary antibodies used in this study are listed in reagent table.  

iPROS Xenografts: 

All procedures involving animals and their care were approved by the Institutional Animal 

Care and Use Committee of CSHS (IACUC008253) in accordance with institutional and National Institutes of 

Health guidelines. Male immunodeficient (NGS) mice (n=1-2/group), 6-8 weeks old were injected, either 

subcutaneously into the flanks or underneath the renal capsule, bilaterally as follows. Each administration site 

received 1 million (1 × 10^6 cells) positive control tumor cells (positive control group), matrigel alone (negative 

control group) or iPSC derived organoids [200 organoids (~150-300 mm in diameter, consists of ~ 2 million 

single cells, uninformedly sheared with 1 ml pipette tips,) mixed with cold Matrigel (50:50)] for CON_BRCA2 

and MUT_BRCA2 groups. Briefly, animals were anesthetized with induced with isoflurane (1-3%) and 

maintained on a nose cone, placed on a heating pad (37˚C) ear tagged, skin was shaved and aseptically 

prepped using betadine and 70% alcohol. For subcutaneous delivery, a single puncture hole was used to 

deliver the cells into the subcutaneous tissue of both flanks via a 18-gauge needle. For subrenal capsule 

delivery, a ~1cm midline incision was made in the back in between the kidneys, the incision was moved over 

the flank, a small incision was made in the muscle, and the kidney gently exposed through the incision. The 

kidney was kept hydrated using 0.9% sterile saline.  A small incision was made in the kidney capsule using a 

23-gauge needle, using an elevator the capsule was separated from the kidney to create a small pocket. The 

cells or iPROS were delivered in 10-50µL of Matrigel using PE-50 tubing. The kidney was gentrly placed back 

into position through the incision, the muscle layer sutured with absorbable 5-0 suture and the skin incision 

closed with wound-clips. Buprenex (0.1mg/kg) and Carprofen (5mg/kg) were given for analgesia post-

operatively. Animals were monitoried regularly for signs of tumor growth. Mice were euthanized 6 months after 

the graft implant or when the tumour size reached 

300-500 mm

3

.  

Immunohistochemistry of Xenograft iPROS Tissues

Dissected xenografted tissue was fixed in 10% 

formalin for 1 hour at room temperature, then overnight at 4°C, washed with PBS, and stored in 70% ethanol 

overnight. Samples were processed by the Cedars-Sinai Biobank Core for paraffin embedding and sectioned 

at 5 µm. Slides were deparaffinized with xylene (3x, 10 min each), then rehydrated through graded ethanol 

solutions (100%, 95%, 75%, 50%) for 5 minutes each. After rinsing twice with tap water, antigen retrieval was 

performed by microwaving in Vector Unmasking Solution (citric acid-based) and then cooling for 30 minutes. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

Endogenous peroxidase activity was blocked with 0.3% H

O

 in methanol for 30 minutes. Slides were blocked 

with 3% BSA in PBS-T for 1 hour, then incubated overnight at 4°C with primary antibody (1:200). After PBS 

washes, sections were treated with a biotinylated secondary antibody, followed by ABC reagent and DAB 

development. Slides were counterstained with hematoxylin, dehydrated, cleared in xylene, and mounted with 

coverslips. All H&E staining of original patient tissues and xenografted iPROS tissues was done in the biobank 

core.  The slides were stained with hematoxylin (ImmunoMaster Hematoxylin, American MasterTech Scientific, 

Inc.) for 8 minutes, followed by a 5-minute rinse under running tap water. They were then briefly stained with 

eosin (Eosin Y Phloxine B, American MasterTech Scientific, Inc.) for 10 seconds and rinsed again with tap 

water. Afterward, the slides were dehydrated through a graded ethanol series—50%, 75%, 95%, and 100%—

and cleared in xylene, each step lasting 1 minute. Finally, the tissues were mounted with a glass coverslip 

using Richard-Allan Scientific Mounting Medium. 

Ki67 Positive Nuclei Count by Image Segmentation and Particle Analysis:

 iPROS sections or iPSCs were 

stained for Ki67 using a standard immunofluorescence protocol, and nuclei were counterstained with DAPI. 

Fluorescence images were acquired at 20x magnifications to ensure optimal resolution of Ki67-positive nuclei. 

Images were processed using Fiji-ImageJ. First, they were converted to 8-bit grayscale, background noise was 

reduced by applying a median filter (radius 2-3 pixels). After binary water shading, the fluorescence signal 

corresponding to both DAPI and Ki67 staining was thresholded using the “Threshold” tool to musk the nuclei 

and exclude non-specific background staining, ensuring accurate detection of the Ki67-positive signal. Then, 

using the “Analyze Particles” function in Fiji-ImageJ, the segmented DAPI and Ki67-positive areas were further 

analyzed. The parameters for particle analysis were set to 100 to 1500 mm2, and circularity 0.4-1 which 

exclude artifacts and only count particles of a defined size range corresponding to individual nuclei. The “Show 

Results” option provided a count of both DAPI and Ki67-positive nuclei in the image. The number of Ki67-

positive cells was expressed as a percentage of total DAPI-positive nuclei to account for variations in cell 

density. Statistical Analysis: Data from multiple images (n 

 3 per condition and at least six segments) were 

used for statistical analysis. Ki67-positive cell counts were normalized to the total number of DAPI-positive 

nuclei per image, and the results were presented as the mean percentage of Ki67-positive nuclei ± SEM. 

 

mRNA-seq Experiment and Analysis for Transcriptional Profiling of iPROS: 

Total RNA was extracted 

from samples using the QIAGEN Rneasy Mini Kit according to the manufacturer’s instructions. RNA 

concentration and purity were measured using a NanoDrop spectrophotometer, and RNA integrity was 

assessed using the Agilent 2100 Bioanalyzer. Only RNA samples with an RNA Integrity Number (RIN) greater 

than 8 were used for sequencing. Standarised cDNA library preparation (poly A enrichment) was done as 

suggested by manufacturer, using the Illumina TruSeq Stranded mRNA Library Preparation Kit. Libraries were 

quantified using a Qubit fluorometer and assessed for quality on the Bioanalyzer. Pooled libraries were 

sequenced on an Illumina NovaSeq X Plus (PE150) platform with pair-end reads at a depth of ~25 million 

reads per sample. Base calling and demultiplexing were performed using Illumina bcl2fastq software. Raw 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

reads were quality-checked using FastQC and trimmed using Trimmomatic to remove adapters and low-quality 

bases.  

High-quality reads were pseudoaligned to the GRCh38.p13 human reference genome using Salmon (v1.4.0) 

with default parameters. Transcript-level abundances were imported and summarized to the gene level using 

the R package tximport. Genes with an average read count below 3 across all samples or lacking HGNC 

annotation were excluded. Normalization and differential expression analysis were conducted using the 

DESeq2 package in R. Raw counts were transformed using the variance stabilizing transformation (VST) for 

downstream analysis and visualization. Gene expression patterns, heatmaps were generated using 

the tidyverse and  ggplot2 R package. Principal component analysis (PCA) was used to assess sample 

clustering and variance across conditions. Gene symbols were added via the addIDs() function. All rows 

without a corresponding gene symbol were removed. All genes with total counts less than the number of 

samples were removed from subsequent analysis. Samples were processed and analyzed using DESeq2. 

Gene expression was normalized using variance stabilizing transformation, and batches were corrected using 

limma::removeBatchEffect. Volcano plots were generated using the Enhanced Volcano package and PCA was 

performed with PCAtools in R. Gene set enrichment analysis was conducted with Clusterprofiler with GO and 

KEGG biological process gene set. Differential gene expression analysis was performed using DESeq2 in R. 

Counts were normalized using DESeq2’s median-of-ratios method, and differentially expressed genes were 

identified based on an adjusted p-value < 0.05. Data visualization, including principal component analysis 

(PCA) and heatmaps, was conducted using the ggplot2 package. All plots were generated in R (version 4.2.0). 

Gene Set Enrichment Analysis (GSEA) was performed using the pre-ranked method in the 

GSEA_ClusterProfiler2.R and GSEA_preranked_list.R, querying the MsigDB collections. Enriched pathways 

and gene sets were considered significant at a false discovery rate (FDR) of < 0.05.The whole pipeline, 

including code and parameters, is available upon request. For, Venn diagram building, Jvenn software were 

used

69

 

PSA ELISA: 

iPROS culture medium was collected at indicated time points and centrifuge at 1,000 x g for 10 

minutes to remove any cellular debris. Store the supernatant at -80°C until further analysis. We used Human 

PSA (Total)/KLK3 ELISA kit from Thermo-Fisher, and prepared reagents according to the manufacturer’s 

instructions, including PSA standards, wash buffer and detection reagent. Add 50 µL of each standard and 50 

µL of the sample supernatant to the corresponding wells in the ELISA plate. Include blanks and controls as 

needed.  The plate was  incubated at room temperature (RT) for 2-3 hours to allow antigen-antibody binding. 

Wash the plate three times with wash buffer to remove unbound substances.  Add 100 µL of enzyme-

conjugated detection antibody added to each well and incubate for 1 hour at RT. After washing, substrate 

solution was added and incubated for 15 minutes. Finally, we added the stop solution as recommended. 

Absorbance was  measured at 450 nm using a microplate reader, constructed a standard curve using the 

known PSA standards, and calculated the concentration of PSA in the samples. Samples were normalized 

based on total protein concentration using a BCA assay and represented as PSA release per µg of protein. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

Lactate Dehydrogenase (LDH) Cytotoxicity Assay:

 Cell membrane integrity and cytotoxicity were assessed 

using a LDH release assay, which was performed using the CyQUANT-LDH Cytotoxicity Assay 

Kit (ThermoFisher, USA.) according to the manufacturer’s instructions. Briefly, ~200 iPROS were embedded in 

matrigel and allowed to adhere for 2 days before compound treatment. Following treatment with test 

compounds at indicated concentrations and time points, 25 µL of the culture supernatant from each well was 

transferred to a new flat-bottom 96-well plate. An equal volume (25 µL) of LDH reaction mixture was added to 

each well and incubated at room temperature in the dark for 30 minutes. The enzymatic reaction converts 

lactate to pyruvate, resulting in the reduction of a tetrazolium salt to a red formazan product. The absorbance 

was measured at 490 nm, with a reference wavelength of 680 nm, using a microplate reader. Cytotoxicity (%) 

was calculated using the following formula: 

Cytotoxicity (%)=[(Experimental LDH release−Spontaneous LDH release)/(Maximum LDH release−Spontaneo

us LDH release)]×100. 

Spontaneous LDH release is when cells/organoids are incubated with medium only, and Maximum LDH 

release is obtained when iPROS were treated with lysis buffer provided in the kit. All experiments were 

performed in triplicate and repeated at least three times independently. Data are expressed as mean ± SEM. 

 

Statistical Analysis: 

Statistical analyses were conducted using Prism software (GraphPad Software, La Jolla, 

California). Quantitative data are presented as mean values ± Standard Error of the Mean (SEM) and analyzed 

using student t-test with Welch correction or with one-way or 2-way ANOVA (for unequal variances) with 

multiple pair comparisons; analysis was done across three biological replicates, if not it is otherwise mentioned 

in figure legends. Statistical significance was determined with *p 

 0.05, **p 

 0.01, ***p 

 0.001, and ****p 

 

0.0001. 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

SUPPLEMENTRAY FIGURE LEGENDS 

Figure S1: 

(A) Evos-Brightfield images showing the stages of iPROS differentiation. (B) Represented 

immunofluorescence images showing prostate tissue-specific makers in iPROS: AR, NKX3.1, CK8/18, p63, 

PSA, and PSMA with DAPI counterstain, insets are separately shown in Fig.1D. (C) Heatmaps showing the 

TPM normalized expression of genes in iPROS. Genelist generated from Human prostate epithelial (Luminal, 

Basal, and NE) and stromal cell-specific transcripts.  The top 100 highly expressed genes were selected from 

each cell type for comparison. 

 

Figure S2:

 (A) H&E staining of prostatectomy sections from 3 patients; full slide image, insets are separately 

shown in Fig.2A. (B) Representative images showing the Sox2, Oct4, and SSE4 immunostaining in CON_ and 

MUT_BRCA2 iPSCs. (C-D) Relative gene expression profiles (qPCR) of iPSC-specific genes; OCT4  and 

SOX2 in CON_ and MUT_BRCA2 iPSCs. (E-F) Relative gene expression profiles (qPCR) of both BRCA2 and 

BRCA1 in CON_ and MUT_BRCA2 iPSCs. (G-H) Ki67 positive proliferating nuclei analysis in CON_ and 

MUT_BRCA2 iPSCs, representative images, and quantitation. (I) Represented IF images showing the F-actin 

organization, localization of apical (CK8/18), and basal (p63) polarity markers in CON_ and MUT_BRCA2 

iPROS. Scale bars: 100 mM (A, F) and 40 mM (J). (n = 3 different biological replicates). Significance 

calculated with pairwise comparison (t-test; Welch correction); ns= p>0.05, *p < 0.05. 

 

Figure S3: 

(A) PCA analysis and batch correction showing the variance among samples (explained in the 

result).  

(B) Normalized expression of prostate- and PCa-specific genes. (C) GSEA ridge map with significant DEGs 

between CON_ and MUT_BRCA2 iPROS samples. (D) GSEA barcode plots with significant DEGs between 

CON_ and MUT_BRCA2 iPROS samples. (E) Pie chart showing gene commonality/overlapping in 

MUT_BRCA2 with four different MSigdb PCa datasets on significant DEGs between MUT_ vs. CON_BRCA2 

iPROS samples. 

 

Figure S4:

  (A) Bar-plot showing the cytotoxicity of CON_ and MUT_BRCA2 iPROS after 3 weeks of 

incubations with PhIP and MNU. (B-C) Histograms showing the flow cytometric analysis of 

γ

H2AX and Ki67 in 

PhIP and MNU treated CON_ and MUT_BRCA2 iPROS. (D-E) Boxplots showing the cytotoxicity and Bar-plot 

showing the proliferation of CON_ and MUT_BRCA2 iPROS at 4

th

 week following 2 weeks after PhIP and MNU 

treatment withdrawal and addition of Enzalutamide for 2wks., by LDH cytotoxic assay, and mean-fluorescence 

obtained by flow cytometry. (F) LDH cytotoxic assay showing the cytotoxicity of CON_ and MUT_BRCA2 

iPROS at 4

th

 week following 2 weeks after PhIP and MNU treatment withdrawal and addition of Olaparib for 2 

weeks. (G) Flow cytometric analysis of 

γ

H2AX for detecting DNA damage in iPROS with and without Olaparib 

treatment at 4

th

 week. (H) Representative H&E staining of whole mount of subcutaneous and renal capsule 

tumor sections obtained from positive control and MUT_BRCA2 iPROS. Boxed sections are separately shown 

in Fig.4K (I) Representative IF staining of whole mount of kidney with PSMA and ERG, counterstained with 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

DAPI. Significance was calculated using 2-way ANOVA with multiple comparisons: ns= p>0.05, *p < 0.05, **p 

< 0.01, ***p < 0.001, ****p < 0.0001.

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

REFERENCES 

1. 

Siegel, R.L., Kratzer, T.B., Giaquinto, A.N., Sung, H., and Jemal, A. (2025). Cancer statistics, 2025. CA 
Cancer J Clin 75, 10-45. 10.3322/caac.21871. 

2. 

Formaggio, N., Rubin, M.A., and Theurillat, J.P. (2021). Loss and revival of androgen receptor signaling 
in advanced prostate cancer. Oncogene 40, 1205-1216. 10.1038/s41388-020-01598-0. 

3. 

Michmerhuizen, A.R., Spratt, D.E., Pierce, L.J., and Speers, C.W. (2020). ARe we there yet? 
Understanding androgen receptor signaling in breast cancer. NPJ Breast Cancer 6, 47. 
10.1038/s41523-020-00190-9. 

4. 

McHugh, J.K., Bancroft, E.K., Saunders, E., Brook, M.N., McGrowder, E., Wakerell, S., James, D., 
Rageevakumar, R., Benton, B., Taylor, N., et al. (2025). Assessment of a Polygenic Risk Score in 
Screening for Prostate Cancer. N Engl J Med 392, 1406-1417. 10.1056/NEJMoa2407934. 

5. 

Pritchard, C.C., Mateo, J., Walsh, M.F., De Sarkar, N., Abida, W., Beltran, H., Garofalo, A., Gulati, R., 
Carreira, S., Eeles, R., et al. (2016). Inherited DNA-Repair Gene Mutations in Men with Metastatic 
Prostate Cancer. N Engl J Med 375, 443-453. 10.1056/NEJMoa1603144. 

6. 

Lord, C.J., and Ashworth, A. (2016). BRCAness revisited. Nat Rev Cancer 16, 110-120. 
10.1038/nrc.2015.21. 

7. 

Martinez Chanza, N., Bernard, B., Barthelemy, P., Accarain, A., Paesmans, M., Desmyter, L., T'Kint de 
Roodenbeke, D., Gil, T., Sideris, S., Roumeguere, T., et al. (2022). Prevalence and clinical impact of 
tumor BRCA1 and BRCA2 mutations in patients presenting with localized or metastatic hormone-
sensitive prostate cancer. Prostate Cancer Prostatic Dis 25, 199-207. 10.1038/s41391-021-00397-2. 

8. 

Taylor, R.A., Fraser, M., Rebello, R.J., Boutros, P.C., Murphy, D.G., Bristow, R.G., and Risbridger, G.P. 
(2019). The influence of BRCA2 mutation on localized prostate cancer. Nat Rev Urol 16, 281-290. 
10.1038/s41585-019-0164-8. 

9. 

Kostlan, R.J., Phoenix, J.T., Budreika, A., Ferrari, M.G., Khurana, N., Choi, J.E., Juckette, K., 
Mahapatra, S., McCollum, B.L., Moskal, R., et al. (2024). Clinically Relevant Humanized Mouse Models 
of Metastatic Prostate Cancer Facilitate Therapeutic Evaluation. Mol Cancer Res 22, 826-839. 
10.1158/1541-7786.MCR-23-0904. 

10. 

Francis, J.C., and Swain, A. (2018). Prostate Organogenesis. Cold Spring Harb Perspect Med 8
10.1101/cshperspect.a030353. 

11. 

Rebello, R.J., Oing, C., Knudsen, K.E., Loeb, S., Johnson, D.C., Reiter, R.E., Gillessen, S., Van der 
Kwast, T., and Bristow, R.G. (2021). Prostate cancer. Nat Rev Dis Primers 7, 9. 10.1038/s41572-020-
00243-0. 

12. 

Buskin, A., Scott, E., Nelson, R., Gaughan, L., Robson, C.N., Heer, R., and Hepburn, A.C. (2023). 
Engineering prostate cancer in vitro: what does it take? Oncogene 42, 2417-2427. 10.1038/s41388-
023-02776-6. 

13. 

Drost, J., and Clevers, H. (2018). Organoids in cancer research. Nat Rev Cancer 18, 407-418. 
10.1038/s41568-018-0007-6. 

14. 

Hepburn, A.C., Curry, E.L., Moad, M., Steele, R.E., Franco, O.E., Wilson, L., Singh, P., Buskin, A., 
Crawford, S.E., Gaughan, L., et al. (2020). Propagation of human prostate tissue from induced 
pluripotent stem cells. Stem Cells Transl Med 9, 734-745. 10.1002/sctm.19-0286. 

15. 

Singh, P., Lanman, N.A., Kendall, H.L.R., Wilson, L., Long, R., Franco, O.E., Buskin, A., Miles, C.G., 
Hayward, S.W., Heer, R., and Robson, C.N. (2023). Human prostate organoid generation and the 
identification of prostate development drivers using inductive rodent tissues. Development 150
10.1242/dev.201328. 

16. 

Calderon-Gierszal, E.L., and Prins, G.S. (2015). Directed Differentiation of Human Embryonic Stem 
Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure. PLoS 
One 10, e0133238. 10.1371/journal.pone.0133238. 

17. 

Kim, J., Koo, B.K., and Knoblich, J.A. (2020). Human organoids: model systems for human biology and 
medicine. Nat Rev Mol Cell Biol 21, 571-584. 10.1038/s41580-020-0259-3. 

18. 

Shen, M.M., and Rubin, M.A. (2019). Prostate Cancer Research at the Crossroads. Cold Spring Harb 
Perspect Med 9. 10.1101/cshperspect.a036277. 

19. 

Helfand, B.T., Catalona, W.J., and Xu, J. (2015). A genetic-based approach to personalized prostate 
cancer screening and treatment. Curr Opin Urol 25, 53-58. 10.1097/MOU.0000000000000130. 

20. 

Borowsky, A.D., Dingley, K.H., Ubick, E., Turteltaub, K.W., Cardiff, R.D., and Devere-White, R. (2006). 
Inflammation and atrophy precede prostatic neoplasia in a PhIP-induced rat model. Neoplasia 8, 708-
715. 10.1593/neo.06373. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

21. 

Bosland, M.C., Schlicht, M.J., Horton, L., and McCormick, D.L. (2022). The MNU Plus Testosterone Rat 
Model of Prostate Carcinogenesis. Toxicol Pathol 50, 478-496. 10.1177/01926233221096345. 

22. 

Tang, D., Liu, J.J., Rundle, A., Neslund-Dudas, C., Savera, A.T., Bock, C.H., Nock, N.L., Yang, J.J., 
and Rybicki, B.A. (2007). Grilled meat consumption and PhIP-DNA adducts in prostate carcinogenesis. 
Cancer Epidemiol Biomarkers Prev 16, 803-808. 10.1158/1055-9965.EPI-06-0973. 

23. 

Goncalves, B.F., Zanetoni, C., Scarano, W.R., Goes, R.M., Vilamaior, P.S., Taboga, S.R., and 
Campos, S.G. (2010). Prostate carcinogenesis induced by N-methyl-N-nitrosourea (mnu) in gerbils: 
histopathological diagnosis and potential invasiveness mediated by extracellular matrix components. 
Exp Mol Pathol 88, 96-106. 10.1016/j.yexmp.2009.09.017. 

24. 

Bellamri, M., and Turesky, R.J. (2019). Dietary Carcinogens and DNA Adducts in Prostate Cancer. Adv 
Exp Med Biol 1210, 29-55. 10.1007/978-3-030-32656-2_2. 

25. 

Mateo, J., McKay, R., Abida, W., Aggarwal, R., Alumkal, J., Alva, A., Feng, F., Gao, X., Graff, J., 
Hussain, M., et al. (2020). Accelerating precision medicine in metastatic prostate cancer. Nat Cancer 1
1041-1053. 10.1038/s43018-020-00141-0. 

26. 

Cunha, G.R., Vezina, C.M., Isaacson, D., Ricke, W.A., Timms, B.G., Cao, M., Franco, O., and Baskin, 
L.S. (2018). Development of the human prostate. Differentiation 103, 24-45. 10.1016/j.diff.2018.08.005. 

27. 

Thomson, A.A., Cunha, G.R., and Marker, P.C. (2008). Prostate development and pathogenesis. 
Differentiation 76, 559-564. 10.1111/j.1432-0436.2008.00303.x. 

28. 

Spence, J.R., Mayhew, C.N., Rankin, S.A., Kuhar, M.F., Vallance, J.E., Tolle, K., Hoskins, E.E., 
Kalinichenko, V.V., Wells, S.I., Zorn, A.M., et al. (2011). Directed differentiation of human pluripotent 
stem cells into intestinal tissue in vitro. Nature 470, 105-109. 10.1038/nature09691. 

29. 

Buskin, A., Singh, P., Lorenz, O., Robson, C., Strand, D.W., and Heer, R. (2021). A Review of Prostate 
Organogenesis and a Role for iPSC-Derived Prostate Organoids to Study Prostate Development and 
Disease. Int J Mol Sci 22. 10.3390/ijms222313097. 

30. 

Cunha, G.R. (2008). Mesenchymal-epithelial interactions: past, present, and future. Differentiation 76
578-586. 10.1111/j.1432-0436.2008.00290.x. 

31. 

Doles, J., Cook, C., Shi, X., Valosky, J., Lipinski, R., and Bushman, W. (2006). Functional 
compensation in Hedgehog signaling during mouse prostate development. Dev Biol 295, 13-25. 
10.1016/j.ydbio.2005.12.002. 

32. 

Huch, M. (2023). Stem cell-derived organoid models: defying the Hayflick limit. Nat Rev Genet 24, 348. 
10.1038/s41576-023-00577-x. 

33. 

Gao, D., Vela, I., Sboner, A., Iaquinta, P.J., Karthaus, W.R., Gopalan, A., Dowling, C., Wanjala, J.N., 
Undvall, E.A., Arora, V.K., et al. (2014). Organoid cultures derived from patients with advanced prostate 
cancer. Cell 159, 176-187. 10.1016/j.cell.2014.08.016. 

34. 

Balk, S.P., Ko, Y.J., and Bubley, G.J. (2003). Biology of prostate-specific antigen. J Clin Oncol 21, 383-
391. 10.1200/JCO.2003.02.083. 

35. 

Consortium, G.T. (2013). The Genotype-Tissue Expression (GTEx) project. Nat Genet 45, 580-585. 
10.1038/ng.2653. 

36. 

Henry, G.H., Malewska, A., Joseph, D.B., Malladi, V.S., Lee, J., Torrealba, J., Mauck, R.J., Gahan, 
J.C., Raj, G.V., Roehrborn, C.G., et al. (2018). A Cellular Anatomy of the Normal Adult Human Prostate 
and Prostatic Urethra. Cell Rep 25, 3530-3542 e3535. 10.1016/j.celrep.2018.11.086. 

37. 

Montironi, R., Mazzucchelli, R., Algaba, F., and Lopez-Beltran, A. (2000). Morphological identification of 
the patterns of prostatic intraepithelial neoplasia and their importance. J Clin Pathol 53, 655-665. 
10.1136/jcp.53.9.655. 

38. 

Kim, J., and Coetzee, G.A. (2004). Prostate specific antigen gene regulation by androgen receptor. J 
Cell Biochem 93, 233-241. 10.1002/jcb.20228. 

39. 

Pignon, J.C., Grisanzio, C., Geng, Y., Song, J., Shivdasani, R.A., and Signoretti, S. (2013). p63-
expressing cells are the stem cells of developing prostate, bladder, and colorectal epithelia. Proc Natl 
Acad Sci U S A 110, 8105-8110. 10.1073/pnas.1221216110. 

40. 

Tan, H.L., Haffner, M.C., Esopi, D.M., Vaghasia, A.M., Giannico, G.A., Ross, H.M., Ghosh, S., Hicks, 
J.L., Zheng, Q., Sangoi, A.R., et al. (2015). Prostate adenocarcinomas aberrantly expressing p63 are 
molecularly distinct from usual-type prostatic adenocarcinomas. Mod Pathol 28, 446-456. 
10.1038/modpathol.2014.115. 

41. 

Wei, J., Xu, G., Wu, M., Zhang, Y., Li, Q., Liu, P., Zhu, T., Song, A., Zhao, L., Han, Z., et al. (2008). 
Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation. 
Anticancer Res 28, 327-334. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

42. 

Bolis, M., Bossi, D., Vallerga, A., Ceserani, V., Cavalli, M., Impellizzieri, D., Di Rito, L., Zoni, E., Mosole, 
S., Elia, A.R., et al. (2021). Dynamic prostate cancer transcriptome analysis delineates the trajectory to 
disease progression. Nat Commun 12, 7033. 10.1038/s41467-021-26840-5. 

43. 

Dagg, R.A., Zonderland, G., Lombardi, E.P., Rossetti, G.G., Groelly, F.J., Barroso, S., Tacconi, E.M.C., 
Wright, B., Lockstone, H., Aguilera, A., et al. (2021). A transcription-based mechanism for oncogenic 
beta-catenin-induced lethality in BRCA1/2-deficient cells. Nat Commun 12, 4919. 10.1038/s41467-021-
25215-0. 

44. 

Cancer Genome Atlas Research, N. (2015). The Molecular Taxonomy of Primary Prostate Cancer. Cell 
163, 1011-1025. 10.1016/j.cell.2015.10.025. 

45. 

Song, H., Weinstein, H.N.W., Allegakoen, P., Wadsworth, M.H., 2nd, Xie, J., Yang, H., Castro, E.A., Lu, 
K.L., Stohr, B.A., Feng, F.Y., et al. (2022). Single-cell analysis of human primary prostate cancer 
reveals the heterogeneity of tumor-associated epithelial cell states. Nat Commun 13, 141. 
10.1038/s41467-021-27322-4. 

46. 

Gerhauser, C., Favero, F., Risch, T., Simon, R., Feuerbach, L., Assenov, Y., Heckmann, D., 
Sidiropoulos, N., Waszak, S.M., Hubschmann, D., et al. (2018). Molecular Evolution of Early-Onset 
Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell 34, 996-1011 
e1018. 10.1016/j.ccell.2018.10.016. 

47. 

Liu, J., Lichtenberg, T., Hoadley, K.A., Poisson, L.M., Lazar, A.J., Cherniack, A.D., Kovatich, A.J., 
Benz, C.C., Levine, D.A., Lee, A.V., et al. (2018). An Integrated TCGA Pan-Cancer Clinical Data 
Resource to Drive High-Quality Survival Outcome Analytics. Cell 173, 400-416 e411. 
10.1016/j.cell.2018.02.052. 

48. 

Anselmino, N., Labanca, E., Shepherd, P.D.A., Dong, J., Yang, J., Song, X., Nandakumar, S., Kundra, 
R., Lee, C., Schultz, N., et al. (2024). Integrative Molecular Analyses of the MD Anderson Prostate 
Cancer Patient-derived Xenograft (MDA PCa PDX) Series. Clin Cancer Res 30, 2272-2285. 
10.1158/1078-0432.CCR-23-2438. 

49. 

Little, M.P., Eidemuller, M., Kaiser, J.C., and Apostoaei, A.I. (2024). Minimum latency effects for cancer 
associated with exposures to radiation or other carcinogens. Br J Cancer 130, 819-829. 
10.1038/s41416-023-02544-z. 

50. 

Mao, Z., Bozzella, M., Seluanov, A., and Gorbunova, V. (2008). DNA repair by nonhomologous end 
joining and homologous recombination during cell cycle in human cells. Cell Cycle 7, 2902-2906. 
10.4161/cc.7.18.6679. 

51. 

Mah, L.J., El-Osta, A., and Karagiannis, T.C. (2010). gammaH2AX: a sensitive molecular marker of 
DNA damage and repair. Leukemia 24, 679-686. 10.1038/leu.2010.6. 

52. 

Sonoda, E., Hochegger, H., Saberi, A., Taniguchi, Y., and Takeda, S. (2006). Differential usage of non-
homologous end-joining and homologous recombination in double strand break repair. DNA Repair 
(Amst) 5, 1021-1029. 10.1016/j.dnarep.2006.05.022. 

53. 

Cahill, D.P., Kinzler, K.W., Vogelstein, B., and Lengauer, C. (1999). Genetic instability and darwinian 
selection in tumours. Trends Cell Biol 9, M57-60. 

54. 

Jiang, Z., Li, C., Fischer, A., Dresser, K., and Woda, B.A. (2005). Using an AMACR 
(P504S)/34betaE12/p63 cocktail for the detection of small focal prostate carcinoma in needle biopsy 
specimens. Am J Clin Pathol 123, 231-236. 10.1309/1g1nk9dbgfnb792l. 

55. 

Kuefer, R., Varambally, S., Zhou, M., Lucas, P.C., Loeffler, M., Wolter, H., Mattfeldt, T., Hautmann, 
R.E., Gschwend, J.E., Barrette, T.R., et al. (2002). alpha-Methylacyl-CoA racemase: expression levels 
of this novel cancer biomarker depend on tumor differentiation. Am J Pathol 161, 841-848. 
10.1016/s0002-9440(10)64244-7. 

56. 

Khosh Kish, E., Choudhry, M., Gamallat, Y., Buharideen, S.M., D, D., and Bismar, T.A. (2022). The 
Expression of Proto-Oncogene ETS-Related Gene (ERG) Plays a Central Role in the Oncogenic 
Mechanism Involved in the Development and Progression of Prostate Cancer. Int J Mol Sci 23
10.3390/ijms23094772. 

57. 

Eguchi, F.C., Faria, E.F., Scapulatempo Neto, C., Longatto-Filho, A., Zanardo-Oliveira, C., Taboga, 
S.R., and Campos, S.G. (2014). The role of TMPRSS2:ERG in molecular stratification of PCa and its 
association with tumor aggressiveness: a study in Brazilian patients. Sci Rep 4, 5640. 
10.1038/srep05640. 

58. 

He, Y., Wang, L., Wei, T., Xiao, Y.T., Sheng, H., Su, H., Hollern, D.P., Zhang, X., Ma, J., Wen, S., et al. 
(2021). FOXA1 overexpression suppresses interferon signaling and immune response in cancer. J Clin 
Invest 131. 10.1172/JCI147025. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

59. 

Davis, I.D., Martin, A.J., Stockler, M.R., Begbie, S., Chi, K.N., Chowdhury, S., Coskinas, X., 
Frydenberg, M., Hague, W.E., Horvath, L.G., et al. (2019). Enzalutamide with Standard First-Line 
Therapy in Metastatic Prostate Cancer. N Engl J Med 381, 121-131. 10.1056/NEJMoa1903835. 

60. 

Jain, A., Barge, A., and Parris, C.N. (2025). Combination strategies with PARP inhibitors in BRCA-
mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene 44, 193-207. 
10.1038/s41388-024-03227-6. 

61. 

Quail, D.F., and Joyce, J.A. (2013). Microenvironmental regulation of tumor progression and 
metastasis. Nat Med 19, 1423-1437. 10.1038/nm.3394. 

62. 

Isaacson, D., Shen, J., Cao, M., Sinclair, A., Yue, X., Cunha, G., and Baskin, L. (2017). Renal 
Subcapsular xenografing of human fetal external genital tissue - A new model for investigating urethral 
development. Differentiation 98, 1-13. 10.1016/j.diff.2017.09.002. 

63. 

Guillen, K.P., Fujita, M., Butterfield, A.J., Scherer, S.D., Bailey, M.H., Chu, Z., DeRose, Y.S., Zhao, L., 
Cortes-Sanchez, E., Yang, C.H., et al. (2022). A human breast cancer-derived xenograft and organoid 
platform for drug discovery and precision oncology. Nat Cancer 3, 232-250. 10.1038/s43018-022-
00337-6. 

64. 

Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A., and Humphreys, B.D. (2014). Differentiated kidney 
epithelial cells repair injured proximal tubule. Proc Natl Acad Sci U S A 111, 1527-1532. 
10.1073/pnas.1310653110. 

65. 

Sharma, A., Sances, S., Workman, M.J., and Svendsen, C.N. (2020). Multi-lineage Human iPSC-
Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell 26, 309-329. 
10.1016/j.stem.2020.02.011. 

66. 

Huang, H., Hu, C., Na, J., Hart, S.N., Gnanaolivu, R.D., Abozaid, M., Rao, T., Tecleab, Y.A., 
Consortium, C., Pesaran, T., et al. (2025). Functional evaluation and clinical classification of BRCA2 
variants. Nature 638, 528-537. 10.1038/s41586-024-08388-8. 

67. 

Venkitaraman, A.R. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108
171-182. 10.1016/s0092-8674(02)00615-3. 

68. 

Walmsley, C.S., Jonsson, P., Cheng, M.L., McBride, S., Kaeser, C., Vargas, H.A., Laudone, V., Taylor, 
B.S., Kappagantula, R., Baez, P., et al. (2024). Convergent evolution of BRCA2 reversion mutations 
under therapeutic pressure by PARP inhibition and platinum chemotherapy. NPJ Precis Oncol 8, 34. 
10.1038/s41698-024-00526-9. 

69. 

Bardou, P., Mariette, J., Escudie, F., Djemiel, C., and Klopp, C. (2014). jvenn: an interactive Venn 
diagram viewer. BMC Bioinformatics 15, 293. 10.1186/1471-2105-15-293. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

Figure 1: Acharya et. al.

PBMC

iPSC

DE

Day 4

Day 8

HGE

Day 60

iPROS

Day 0

PP

Day 15

Activin A

FBS

FGF4

WNT3A

FGF10

WNT10A

FGF10

FGF7

SAG
DHT

iPROS

Media

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

Prostate Specific Genes

(The Human Protein Atlas)

(I)

80% similarity

~70% similarity

iPSC

iPROS-60 days

4x 10x

4x

AR

NKX3

-1

CK8/18

PSMA

PSA

p63

Prostate Epithelia

AR

NKX3-1

CK8/18

p63

CgA

Prostate Specific Genes

(normalised expression)

GTEx Geneset

iPROS

(

)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

Figure 2: Acharya et. al.

(A)

G

C

A

C

A

G

C

AA

G

T

GG

AAAA

T

C

T

G

C

A

C

A

G

C

AA

G-GG

AAAA

T

C

T

MUT1_BRCA4i-iPSC

MUT1_BRCA4i-iPROS

G

C

A

C

A

G

C

AA

G

T

GG

AAAA

T

C

T

G

C

A

C

A

G

C

AA

G

T

GG

AAAA

T

C

T

MUT2_BRCA2A-iPSC

MUT2_BRCA2A-iPROS

A

T

A

TT

G

A

C

A

T

A

C

TTT

G

C

AA

T

A

T

A

TT

G

A

C

A

T

----

T

G

C

AA

T

MUT2_BRCA3i-iPSC

MUT2_BRCA3i-iPROS

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

iPROS

CON_BRCA2

iPROS

MUT_BRCA2

Ki67

/

DAPI

Vimentin

/

DAPI

iPROS

CON_BRCA2

iPROS

MUT_BRCA2

_

SMA

/

DAPI

iPROS

CON_BRCA2

iPROS

MUT_BRCA2

(K)

(L)

iPROS

CON_BRCA2

iPROS

MUT_BRCA2

MUT1_BRCA4i

5946delT, GG2, pT2

MUT2_BRCA2A

5946delT, GG5, T2

MUT3_BRCA3i

c.9513_9516del

GG5, T3b1M1

iPROS

CON_BRCA2

PSA

iPROS

MUT_BRCA2

DAPI

/

PSA

/

F-actin

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

GO-Enriched Pathways

KEGG-Enriched Pathways

Figure 3: Acharya et. al.

Log2 (fold change)

-Log10 (adjusted p-value)

(A)

(B)

(C)

(D)

(E)

(F)

CON1

CON2

CON3

MUT1_BRCA4i

MUT2_BRCA2A

MUT3_BRCA3i

CON1

CON2

CON3

MUT1_BRCA4i

MUT2_BRCA2A

MUT3_BRCA3i

CON1

CON2

CON3

MUT1_BRCA4i

MUT2_BRCA2A

MUT3_BRCA3i

(I)

(J)

(H)

(L)

DEG = 862

DEG = 1362

DEG = 104

(K)

Rank: p-adjust

Hallmark50-Enriched Pathways

(G)

GG2-pT2: 33 gene matched 

DOWN-DEG

TCGA_PRAD vs. CON.

hypergeometric p-value = 0.2436368

DEG

MUT2_BRCA4i vs. CON.

UP-DEG

TCGA_PRAD vs. CON.

1661 0 2258

13

20

71

0

GG5-T2: 263 gene matched 

DOWN-DEG

TCGA_PRAD vs. CON.

hypergeometric p-value = 1.045108e-16 

DEG

MUT2_BRCA2A vs. CON.

UP-DEG

TCGA_PRAD vs. CON.

1615 0 2093

72

191

599

0

GG5-T3bN1M1: 413 gene matched 

DOWN-DEG

TCGA_PRAD vs. CON.

hypergeometric p-value = 2.582221e-25

DEG

MUT2_BRCA3i vs. CON.

UP-DEG

TCGA_PRAD vs. CON.

1585 0 1973

102 311

909

0

Cell Lines

MUT2_BRCA2A
MUT3_BRCA3i
MUT1_BRCA4i
CON1
CON2
CON3

PC4, 7.61% variation

PC1, 33.28% variation

PC

4,

 7

.6

1%

 variation

**

**

MUT_BRCA2

CON_BRCA2

MUT_BRCA2

CON_BRCA2

MUT_BRCA2

CON_BRCA2

MUT_BRCA2

CON_BRCA2

MUT_BRCA2

CON_BRCA2

MUT_BRCA2

CON_BRCA2

MUT_BRCA2

CON_BRCA2

**

**

***

*

*

**

*

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

Figure 4: Acharya et. al.

(A)

(C)

(E)

(I)

(D)

(H)

(G)

(F)

(B)

(I)

(J)

(K)

(L)

(M)

(N)

iPROS-MUT_BRCA2

DMSO

PHIP5

MNU5

iPROS

CON_BRCA2

iPROS-MUT_BRCA2

DMSO

PHIP5

MNU5

AMACR

/

DAPI

p63

/

DAPI

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

Figure S1: Acharya et. al.

(A)

(B)

(C)

Luminal Epithelial 

Genes

Basal Epithelial 

Genes

NE Epithelial 

Genes

Stromal Fibrobalst 

Genes

iPROS

iPROS

iPROS

iPROS

iPROS

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

Figure S2: Acharya et. al.

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

MUT1_BRCA4i

5946delT, GG2, pT2

MUT2_BRCA2A

5946delT, GG5, T2

MUT3_BRCA3i

c.9513_9516del

GG5, T3b1M1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

Figure S3: Acharya et. al.

(A)

(B)

(C)

(D)

(E)

MUT_BRCA2

CON_BRCA2

MUT_BRCA2

CON_BRCA2

MUT_BRCA2

CON_BRCA2

MUT_BRCA2

CON_BRCA2

*

*

**

*

Before Batch Correction

Batch Effect

After Batch Correction

ï

ï

0

Rank

ed List Metr

ic

FHOOïFHOOMXQFWLRQ

ï

ï

ï

0

3RVLWLRQLQWKH5DQNHG/LVWRI*HQHV

5XQQLQJ(QU

LFKPHQW6FRUH

ï

Rank

ed List Metr

ic

FHOOSHULSKHU\

ï

0

3RVLWLRQLQWKH5DQNHG/LVWRI*HQHV

5XQQLQJ(QU

LFKPHQW6FRUH

0

Rank

ed List Metr

ic

LPPXQHUHFHSWRUDFWLYLW\

0

3RVLWLRQLQWKH5DQNHG/LVWRI*HQHV

5XQQLQJ(QU

LFKPHQW6FRUH

ï

ï

0

Rank

ed List Metr

ic

OLSLGPHWDEROLFSURFHVV

0

3RVLWLRQLQWKH5DQNHG/LVWRI*HQHV

5XQQLQJ(QU

LFKPHQW6FRUH

NES: -0.5761558
padj: 0.0033255736614566

NES: 0.374764660085977
padj: 0.00149476831091181

NES: 0.813369726983327
padj: 0.00174852964552535

NES: 0.454041311466977
padj: 0.00415851272015656

Prost. Cancer_msigdb Genesets

36(67)

55(100)

100(305)

21(41)

*

MUT_BRCA2

CON_BRCA2

MUT_BRCA2

CON_BRCA2

*

MUT_BRCA2

CON_BRCA2

***

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint 

2025.08.26.672478v1.full-html.html
background image

Figure S4: Acharya et. al.

(A)

(B)

(C)

(D)

(E)

(F)

(G)

Ki

_Histogram

a

H2AX_Histogram

(H)

(I)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted August 31, 2025. 

https://doi.org/10.1101/2025.08.26.672478

doi: 

bioRxiv preprint