background image

RESEARCH ARTICLE

Developing potential drugs for insomnia through 
computational analysis

 

[version 1; peer review: 1 approved 

with reservations]

Isaac Oronyi , Richard Kagia

Department of Pharmacology and Pharmacognosy, Kabarak University, Nakuru, Nakuru County, Kenya 

First published:

 16 Oct 2023, 

12

:1332  

https://doi.org/10.12688/f1000research.135151.1

Latest published:

 16 Oct 2023, 

12

:1332  

https://doi.org/10.12688/f1000research.135151.1

v1

 

Abstract

 

Introduction

: Insomnia is a condition that affects the quality of life of 

an individual. It is associated with a lack of sleep or interrupted sleep. 
If not managed, insomnia may end up causing conditions such as 
obesity, heart conditions, hypertension, and mental disorders. Lack of 
sleep is also associated with an increased risk of Alzheimer’s disease. 
There is, therefore, a need to develop a drug that manages insomnia 
with desirable clinical outcomes

Methods

: The canonical smiles of Zolpidem, Suvorexant, Ramelteon, 

and Triazolam were obtained from PubChem. The study used the 
online tool SwissSimilarity to identify structural analogs for Zolpidem, 
Suvorexant, Ramelteon, and Triazolam. The canonical smiles were 
copied to PubChem Sketcher were converted to a 2- dimensional (2D) 
format. The Avogadro was used to optimize the ligands. The 
respective receptors were obtained from the Protein Data Bank. 
Chimera was used to prepare the receptor and the docking, using 
AutoDock Vina. SwissADME and Protox server was used in the 
determination of the pharmacokinetics and toxicity profiles, 
respectively.

Results

: Docking scores, pharmacokinetics, and toxicity profiles of the 

analogs were recorded. Nine structural analogs from the ZINC 
database (ZINC000004222622, ZINC000003981996, 
ZINC000003825731, ZINC000000000903, ZINC000039247014, 
ZINC000010152022, ZINC000000347721, ZINC000065743121 
ZINC000022054496) were found to have a better docking score, blood 
brain barrier permeability, Lipinski’s violations, synthesizability index, 
gastrointestinal tract absorption, p-glycoprotein substrate metabolism 
LD50 compared to the parent drug molecules. All the nine molecules 

Open Peer Review

Approval Status

 

1

version 1

16 Oct 2023

view

Khaled Darwish

, Suez Canal University, 

Ismailia, Egypt

1. 

Any reports and responses or comments on the 
article can be found at the end of the article.

 

Page 1 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Corresponding author:

 Isaac Oronyi (

isaac.oronyi50@gmail.com

)

Author roles:

 

Oronyi I

: Conceptualization, Data Curation, Investigation, Methodology, Resources, Software, Writing – Original Draft 

Preparation, Writing – Review & Editing; 

Kagia R

: Project Administration, Supervision, Validation, Writing – Review & Editing

Competing interests:

 No competing interests were disclosed.

Grant information:

 The author(s) declared that no grants were involved in supporting this work.

Copyright:

 © 2023 Oronyi I and Kagia R. This is an open access article distributed under the terms of the 

Creative Commons Attribution 

License

, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article:

 Oronyi I and Kagia R. 

Developing potential drugs for insomnia through computational analysis [version 1; 

peer review: 1 approved with reservations]

 F1000Research 2023, 

12

:1332 

https://doi.org/10.12688/f1000research.135151.1

First published:

 16 Oct 2023, 

12

:1332 

https://doi.org/10.12688/f1000research.135151.1

 

had good synthesizability index, gastrointestinal absorption and zero 
Lipinski violations indicating good oral availability.

Conclusions

: Ramelteon analogs ZINC000004222622, 

ZINC000003981996, and ZINC000003825731, Triazolam drug-like 
molecules, ZINC000000000903, ZINC000039247014, 
ZINC000010152022, and ZINC000000347721 and Zolpidem drug-like 
molecules ZINC000065743121 and ZINC000022054496 were identified 
as the best compound bases on the pharmacokinetic binding to the 
respective receptors and toxicity profiles.

Keywords

 

Insomnia , Computational analysis , MTR – Melatonin Receptor , 

CYP450 - Cytochrome P450, GABA - Gamma-Aminobutyric Acid , FDA- 

Food and Drug Administration CNS -Central Nervous System.

 

This article is included in the 

Bioinformatics

 

gateway.

 

Page 2 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Introduction

Sleep is considered an essential component of both physical and mental health. Sleep is especially important in the
development of the immune system restoration, regulation of emotions, support of cognitive function in human learning,
and brain recuperation processes.

1

It is recommended that adults sleep for about seven to eight hours a day while in

infants, sleeping hours may be increased up to between 14 and 17 hours a day.

2

Sleep deprivation, is associated with

physical and mental disorders that may eventually lead to conditions such as weight gain, heart disease, and diabetes.

3

Lack of sleep has also been associated with suicidal ideation.

2

,

3

Sleep also helps with the clearance of toxic materials from

the brain through the glymphatic system.

4

This system works 20 folds during sleep than when an individual is awake.

Alzheimer

s is believed to be caused by toxic materials such as amyloid and tau proteins.

4

Lack of adequate sleep is

considered a risk factor for Alzheimer

disease.

4

Insomnia is a condition in which an individual complains of a lack of sleep. These individuals have difficulty in the
initiation and maintenance of sleep.

5

Insomnia is a condition that affects an individual

s psychological, physical,

biological, and social well-being.

6

About one-third of the adult population presents with a symptom of insomnia.

7

It is more prevalent in women compared to men.

8

Individuals who are prone to conditions such as anxiety and those taking

certain medication such as antiretrovirals may be disposed of this condition.

8

Insomnia can lead to conditions such as

depression, coronary heart disease, hypertension, diabetes, and severe migraine.

8

Insomnia has also been indicated as a

major cause of atrial fibrillation in postmenopausal women.

9

Insomnia can be broadly classified into chronic and acute insomnia.

7

Acute insomnia is short-term, it can be caused by

factors such as a change in environment or even stress related and may only last for days.

7

On the other hand, chronic

insomnia is described as the lack of sleep for more than three weeks.

7

In chronic insomnia, may predispose an individual

to psychiatric disorders such as anxiety and depression.

10

Symptoms may differ from children to adults with adults more

likely to experience more problems related to problem maintaining sleep than problem associated to starting sleep.

Environmental factors such as exposure to stressors such as light, poor quality of air, and noise are common causes of
insomnia.

11

In the world of industrialization, people are migrating from rural areas to cities or towns for employment and

personal reasons.

12

With every country aiming to become industrialized, sound air and light pollution would be a

common manifestation.

12

The extremities of weather conditions may cause serious sleep-related disorders. This may be a

result of interference with the normal rhythm that controls the sleep cycle.

13

The current management of insomnia is based

on nonpharmacological and pharmacological interventions. These therapies may be limited based on the tolerance, side
effects and the suitability of the given drug for the patient.

14

Prescription drugs such as antidepressants, stimulants, bronchodilators such as theophylline, steroids, diuretics

15

and

some antiretroviral such as efavirenz,

16

may present with insomnia as a side effect. The regimen may be designed for

twice or three times daily. The patient may need to take the medication every eight hours or 12 hours respectively within a
24-hour interval which may end up interfering with sleep patterns.

15

Short acting benzodiazepines and hypnotics are also

associated with rebound insomnia as a as a result of chronic use of the drugs.

17

Pharmacological treatment of insomnia is aimed at improving the quality of sleep. Currently, the European sleep research
society has approved guidelines that are used in the treatment of insomnia.

18

The classes of drugs in the treatment of

insomnia include melatonin receptor agonists, benzodiazepine receptor agonists, anti-depressants and some first-
generation antihistamines.

18

Benzodiazepine receptor agonists work by binding to the gamma-aminobutyric acid (GABA) receptor. The drugs act as
positive allosteric modulators increasing the inward flow of chloride ions. This causes depression of the central nervous
system causing sleep.

19

The GABBA receptor agonists include both benzodiazepines and the non-benzodiazepines, such

as the Z-compounds; Zolpidem and Zaleplon. Quazepam is an The Food and Drug Administration (FDA)-approved
benzodiazepine used in the treatment of chronic insomnia. Triazolam, Flurazepam, and Temazepam have been indicated
in the treatment of sleep-onset insomnia. Temazepam is the most prescribed drug for insomnia.

20

,

21

Benzodiazepines are

common for abuse. For example, Flurazepam has been used in crime for stupefying people.

19

These drugs are also

associated with tolerance and these drugs are not advised to be given to patients during pregnancy.

19

Zolpidem has been associated with increased orthostatic hypotension in hospitalized patients, confusion, dizziness,
suicidal ideation, rebound insomnia, and daytime sedation.

22

It has been categorized in class C. Women in pregnancy are

at risk of getting children with a low weight if they take Zolpidem during pregnancy.

22

,

23

Page 3 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Zaleplon is available as intravenous and oral preparations. Has the same side effects as zolpidem but has high incidences
of hallucination and hypersensitivity

22

,

23

The dose should also be decreased in the elderly because of their slow

metabolism.

23

Antihistamine drugs are also another group of drugs used in the treatment of insomnia. The commonly used drugs include
diphenylamine, doxylamine, and chlorpheniramine. They work by H1 receptor antagonism.

20

Their application utilizes

the side effect associated with first generations of antihistamines which is sedation. Although they are usually sold over
the counter, these drugs are characterized by rapid tolerance and possible anticholinergic side effects such as urinary
retention dry mouth, confusion, and constipation which may become worse as the dose is increased to obtain the desired
effects.

23

Their rapid availability over the counter commonly allows misuse. They are not preferred as first line treatment

because they are contraindicated in patients with concurrent medical conditions glaucoma, asthma, and bladder
obstruction.

24

Melatonin receptor agonists are drugs that work by the activation of the melatonin receptors M1 and M2. Melatonin
regulates the sleep-wake cycle and at the same time reproduction activities and growth that commonly happens during
sleep.

25

The common drugs that have been used include Ramelteon and Melatonin. Others include Tasimelteon and

agomelatine. Melatonin is rarely used because of the short duration of action.

24

Ramelteon binds to MTR1 and MTR2, this causes a reduction sleep-onset latency, slightly improve sleep efficiency and
increase total sleep time.

24

,

26

Although ramelteon has been described as not tending to cause tolerance and rebound

insomnia, clinical trials did prove that ramelteon dosage at 8 milligrams may cause, retropharyngeal pain, depression
galactorrhea, decreased libido, upper respiratory tract infections and exacerbated insomnia. This drug is also expensive
and hence not readily available.

26

Orexin receptor antagonist suvorexant approved in the year 2014, and was first marketed for insomnia.

20

Orexin receptor

antagonists influence patient wakefulness and sleep. The antagonism of this receptor is associated with decreased
wakefulness.

20

Although the medication does not need adjustment in patients with renal and hepatic insufficiencies, the

drug is a category c medication. The adverse effects are limited as compared to other drugs used for insomnia but the drug
is comparatively costly.

27

Doxepin is a tricyclic anti-depressant. It has been approved for the treatment of insomnia based on its activity on the H1
receptor is associated improvement of sleep latency.

20

It is a category C drug, with wide metabolism by the CYP2D6 and

CYP2C19 enzymes. This property makes the administration of the drug hard with drugs that are inhibitors or inducers of
those enzymes. Patients on doxepin may also experience allergic reactions.

28

Drug development involves analyzing vast libraries of compounds for their capacity to bind to a target protein. Preclinical
testing, clinical trials, and identifying possible drug candidates are all steps in drug discovery and development.

29

Virtual

screening is a computational technique used in drug development to find prospective therapeutic candidates. Ligand-
based virtual screening is a subset of virtual screening that looks for novel ligands with similar binding properties using
the 3D structure of an existing ligand.

30

,

31

This technique has been used in the discovery of drugs that are currently or

being studied in use in conditions such as COVID-19, cancer, and Alzheimer

s disease.

4

,

32

There is a gap in drug

development through virtual screening in the development of insomnia drugs.

33

This study works in line with the currently ongoing research for a drug that is most effective in the treatment of insomnia.
Zolpidem, suvorexant, ramelteon, and triazolam are analyzed. The aim is to get a drug that can be given to patients in such
a way the patient could continue their current medications and at the same time have a good sleep hence, the drug should
have very few interactions with the drugs in concurrent use. The drugs should be effective in the lowest concertation given
to patients suffering from insomnia. This means the drugs should then have a better docking score compared to the current
drugs used. The drugs should also have minimal side effects. The drug should also be effective in insomnia related
to environmental changes. It should also be able to treat the condition completely and treat the patient with the fewest
doses possible. The drug should also be safe to use during pregnancy. In general, we aim at getting a drug with better
pharmacokinetics pharmacodynamics, and pharmacogenomics compared to the current drugs in use.

Methods

Retrieving the drug models

The canonical smiles of Suvorexant, Ramelteon, Zolpidem and Triazolam were individually searched and copied from

PubChem

online library (RRID:SCR_004284). The Canonical smiles obtained were pasted into the

SwissSimilarity

search bar. The class of drugs was set as commercial. The combined, Zinc-Drug like was selected with combines 2D and

Page 4 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

3D. This was used as a query to generate similar molecular structures from the ZINC database through ligand based
virtual screening. The red search button of the page was clicked to allow the query to begin, which took a few minutes to
generate the final results. The generated results were downloaded and saved as an excel file.

Retrieving and preparation of the retrieving the protein models

The receptors were obtained from the

protein data bank

GABA-A receptor, Orexin receptor, and melatonin receptor were

individually searched on

protein data bank

(RRID:SCR_012820) search bar and downloaded using the

Download file

option available on the Protein Data Bank. The receptors were saved in the project directory. The receptors were

Cleaned

by removing all non-standard compounds by clicking on the

Select

option on chimera, then selecting all

non-standard compounds, and finally deleting using the

Actions

option on chimera software (RRID: SCR_004097).

Ligand preparation

The first 20 canonical smiles of each parent drug compound, were pasted in the search bar at

PubChem Sketcher

and enter

button clicked to allow the generation of a to a 2D molecular structure. The generated structure was saved as

All files

format by clicking the export button present in

PubChem Sketcher

to the Project folder in the desktop.

PubChem Sketcher

was refreshed before the next canonical smile was inserted for the next query.

The Avogadro software (RRID: SCR_011958) was opened. The software was used to open the 2D files which were
generated from the project folder in the Desktop. The 2D structures of the analogs and the drug compounds were
converted to 3D structures automatically, by opening them individually, and clicking

yes

on the prompt by Avogadro to

generate a 3D model of the 2D structure that was being opened. The 3D generated structure was optimized by clicking the
auto optimization option provided in Avogadro. The settings were set to MMF94s force field, and fixed atoms movable,
on the Algorithm settings. The start button was clicked and the structure was allowed to form the most stable
conformation. The most stable conformation was determined when the Auto optimization energy became constant.
The resulting structure was saved as a.mol file to be used in the next step in chimera.

The optimized ligands were then opened and minimized (to add charges and hydrogen) using the Chimera software.
This was done by clicking tools, then structure editing, using the steric only settings and then Gasteiger as the other
residues, in the setting section. The resulting minimized structure was saved in the project folder to for the next process of
docking

Docking

The minimized ligands and the cleaned receptor were opened simultaneously in Chimera. The docking process was
initiated where the ligands were docked with their respective receptors using the chimera software, embedded with
AutoDock Vina (RRID: SCR_011958). The docked compounds with better docking scores than the parent compounds
were afterwards analyzed using the Biovia Discovery studio (RRID: SCR_01565) to determine the interaction between
the receptor and the ligand using the 2D and 3D models of the complexes.

Determination of the pharmacokinetic properties

The canonical smiles of compound found to have a better docking score than the parent compounds were pasted on

SwissADME

online tool search box and queried to determine possible pharmacokinetic properties. The results were

saved as an excel file. The results contained parameters such as Blood brain barrier permeability, the Lipinski

s

violations, Gastrointestinal tract absorption, p-glycoprotein substrate, metabolism and synthesizability index which
were used in the study.

Determination of the toxicity profile

The

Protox

online tool was used to predict the toxicities of the compounds. The canonical smiles of the parent drug

compounds and the analogues were pasted individually on the search bar in the Protox server and queried for the toxicity
profiles prediction. The parameters that were analyzed included the individual toxicities based on the LD50 were
automatically generated with the

Protox

which was directly obtained from the search results.

Data presentation

Tables of the specific analogues (

Table 1

,

Table 2

,

Table 3

and

Table 4

were recorded showing various data obtained.

The data include the docking scores, the pharmacokinetic profile, and the toxicities profile.

Page 5 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Table

1.

Suvorexant

and

its

analogs

pharmacodynamic

and

toxicity

data.

Compound

Docking

scores

LD50

(mg/kg)

Blood

brain

barrier

permeant

Gastrointestinal

absorption

P-glycoprotein

substrate

Metabolism

Lipinski

violations

Synthetic

accessibility

Suvorexant

-9.2

1000

No

High

No

CYP

(2C19,2C9,

2C19)

0

3.97

ZINC000049036447

-10.6

1190

No

High

No

CYP

(2C9,

2C19,3A4)

0

3.97

ZINC000095079930

-10.0

1190

No

High

No

CYP

(2C9,

2C19

2D6,3A4)

0

3.97

ZINC000253476142

-9.8

1190

No

High

No

CYP

(2C9,

2C19,3A4)

0

3.96

ZINC000206774725

-9.3

1190

Yes

High

No

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

3.34

ZINC000206770769

-9.6

1000

No

High

No

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

3.44

ZINC000206774070

-9.8

1000

Yes

High

Yes

CYP

(2C9,

2C19

2D6,3A4)

0

3.51

ZINC000206774330;

-9.3

1190

Yes

High

No

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

3.46

ZINC000253409176

-9.8

1190

No

High

No

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

3.95

ZINC000253409179

-9.7

1190

No

High

No

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

3.95

ZINC000206774469

-3.8

1190

Yes

High

Yes

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

3.63

ZINC000253409181

-9.9

1190

Yes

High

No

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

3.36

ZINC000253409181

-9.5

1190

No

High

No

CYP

(2C9,

2C19

2D6,3A4)

0

3.95

Page 6 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Table

2.

Ramelteon

and

its

analogs

pharmacodynamic

and

toxicity

data.

compound

Docking

scores

LD

50

(mg/kg)

Gastrointerstinal

absorption

Blood

brain

barrier

permeant

P-glycoprotein

substrate

Metabolism

Lipinski

volations

Synthetic

accessibility

Ramelteon

-7.8

1000

High

Yes

Yes

CYP(2C19,2D6)

0

2.91

ZINC000000007031

-8.5

1190

HIGH

Yes

Yes

CYP(2C19

2D6)

0

2.91

ZINC000003960339

-8.8

860

HIFH

Yes

Yes

CYP(2D6)

0

2.81

ZINC000003981996

-7.9

860

HIGH

Yes

Yes

CYP(2D6)

0

2.96

ZINC000003825731

-8.5

860

HIGH

Yes

No

CYP(2D6)

0

2.45

ZINC000068741265

-8.7

1190

HIGH

Yes

No

CYP

(1A2,2C9,

2C19

2D6)

0

2.02

ZINC000068741252

-8.5

1190

HIGH

Yes

Yes

CYP

(1A2,2C9,

2C19

2D6)

0

2.18

ZINC000068741294

-8.0

860

HIGH

Yes

Yes

CYP(2D6)

0

2.58

ZINC000225596222

-8.3

860

HIGH

Yes

Yes

CYP

(2C9,

2C19,2D6)

0

2.68

ZINC000225596523

-8.6

860

HIGH

Yes

No

CYP

(2C19

2D6)

0

3.36

ZINC000004222632

-8.5

860

HIGH

Yes

No

CYP

(2C9,

2D6,3A4)

0

3.36

ZINC000225596253

-9.1

860

High

Yes

No

2C19,2D6

0

2.68

ZINC000225600895

-8.3

2000

High

Yes

No

CYP(1A2,2C19,2D6)

0

2.65

ZINC000004222622

-8.7

860

High

Yes

No

CYP(2D6)

0

3.28

Page 7 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Table

3.

Triazolam

and

its

analogs

pharmacodynamic

and

toxicity

data.

Compound

Docking

scores

LD

50

(mg/kg)

Gastrointestinal

absorption

Blood

brain

barrier

permeant

P-glycoprotein

substrate

Metabolism

Lipinski

violations

Synthetic

accessibility

Triazolam

-8.1

695

High

Yes

Yes

CYP

(1A2,2C9,

2C19)

0

3.37

ZINC000000002212

-8.5

1080

High

Yes

Yes

CYP

(1A2,2C9,

2C19)

0

3.37

ZINC000000346674

-8.4

1080

High

Yes

Yes

CYP

(1A2,3A4)

0

3.25

ZINC000000000903

-8.8

1080

High

Yes

Yes

CYP

(1A2)

0

3.33

ZINC000039247014

-8.8

1080

High

Yes

Yes

CYP

(1A2,2C9,3A4)

0

3.43

ZINC000010152022

-8.2

1080

High

Yes

Yes

CYP

(1A2,

2C19)

0

3.24

ZINC000000347721

-8.8

1080

High

Yes

Yes

CYP

(1A2,2C9)

0

3.46

ZINC000079424448

-8.2

1000

High

Yes

Yes

CYP

(1A2,3A4)

0

3.33

ZINC000000702142

-8.3

1000

High

No

Yes

CYP

(3A4)

0

3.61

ZINC000039247035

-8.5

1000

High

Yes

Yes

CYP

(1A2,3A4)

0

3.31

Page 8 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Table

4.

Zolpidem

analysis

data.

compound

Docking

scores

LD

50

(mg/kg)

Blood

brain

barrier

permeability

P-glycoprotein

substrate

Gastrointestinal

absorption

Metabolsm

Lipinski

violations

Synthetic

accessibility

Zolpidem

-8.1

695

yes

No

High

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

2.93

ZINC000000003876

-8.7

1000

Yes

No

High

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

2.93

ZINC000067665462

-8.1

1000

Yes

No

High

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

2.92

ZINC000065743121

-8.3

1000

Yes

No

High

CYP

(1A2,2C9,

2C19,3A4)

0

2.9

ZINC000041288365

-8.7

1000

Yes

Yes

High

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

2.71

ZINC000013801078

-8.9

1000

Yes

No

High

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

2.78

ZINC000041292591

-8.9

695

Yes

No

High

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

2.78

ZINC000022054496

-8.1

1190

Yes

No

High

CYP

(1A2,2C9,

2C19,3A4)

0

2.62

ZINC000071853335

-8.0

695

Yes

No

High

CYP

(1A2,,

2C19

2D6,)

0

2.46

ZINC000041282761

-8.0

695

Yes

No

High

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

2.45

ZINC000063832471

-8.6

695

Yes

No

High

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

2.75

ZINC000064675847

-8.6

695

Yes

No

High

CYP

(1A2,2C9,

2C19

2D6,3A4)

0

2.85

ZINC000426519011

-8.8

695

Yes

Yes

High

CYP

(1A2,

2C19

2D6,3A4)

0

2.5

Page 9 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Results and discussion

Suvorexant and its analogues

Suvorexant interacts with the orexin receptor through van der Waal forces hydrogen bonds, carbon-sulfur, Pi-sulfur, Pi-Pi
alkyl, alkyl, and Pi alkyl (

Figure 1

). The increase in interaction forces between the receptor and the drug molecule

increases the duration of activity of the drug in the receptor hence the activity of the drug and decreasing the concentration
of the drugs needed to provide therapeutic effects.

4

Docking scores, pharmacokinetic and toxicity profiles of 20 compounds similar to suvorexant were analyzed.
From the 20 molecules, 12 compounds (

Table 1

showed better docking scores compared to the parent drug. All the

molecules showed higher Gastrointestinal absorption indicating that the molecules can easily be administered orally.

34

The parent molecule had a poor penetration to the central nervous system (CNS) which is their site of action. five
molecules showed higher CNS bioavailability as compared to the parent compound. They include ZINC000206774725,
ZINC000206774070, ZINC000206774330, ZINC000206774469 and ZINC000253409181.

Suvorexant

ZINC000206774070 and ZINC000206774469 have good CNS penetration ability but those molecules are good sub-
strates of P-glycoprotein. P-glycoprotein is a transporter that decreases the absorption of a drug by pumping the molecule
back into the lumen. As a substrate of P-glycoprotein, the drug concentration may not be enough to cause the desired
therapeutic effects.

31

All the molecules do not have any Lipinski violation. A molecule that violates Lipinski

s rule of five indicates its limited

bioavailability and oral absorption, these substances may need to be administered

via

other methods. In drug develop-

ment, the rule is often applied.

35

ZINC000206774725, ZINC000206774330, and ZINC000253409181 are not a substrate of P-glycoprotein (

Table 3

).

These molecules on the other hand have a greater Cytochrome P450 (CYP) enzyme interaction compared to the parent
molecule. They all interact with CYP 1A2,2C9, 2C19 2D6,3A4 as an inhibitor. These enzymes are essential in the
metabolism of many drugs.

36

Inhibition of those molecules may cause a serious interaction with other drugs which are

administered to the patient. The molecules can all be synthesized. They all have a synthesizability index of above 3.2.

LD50 was used in the estimation of the molecule

s toxicity profile. This is a dose that is necessary to kill 50%

of the population or test subjects. As a result, a higher LD50 value implies that a drug is less dangerous since a larger
dose is required to kill half of the population or test subjects.

37

ZINC000206774725, ZINC000206774330, and

ZINC000253409181 have a higher LD50 compared to the parent compound; suvorexant indicating that the molecules
are safer compared to the parent molecule.

Figure 1.

Suvorexant interaction with and orexin receptor.

Page 10 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Ramelteon and its analogues

Docking scores, pharmacokinetic and toxicity profiles of Ramelteon interacts with the melatonin receptor by the van der
Waal forces hydrogen bonds, alkyl, and Pi alkyl (

Figure 2

). Van der Waal forces are the weakest involved in the

interaction while the hydrogen bonds are the strongest forces involved.

35

Ramelteon

20 molecules similar to Ramelteon were analyzed. Thirteen compounds showed better docking scores compared to the
parent molecule Ramelteon (

Table 2

). Out of the 13 compounds, two compounds had better pharmacokinetic properties

compared to the parent compound. The two compounds ZINC000003825731, and ZINC000004222622 (

Table 2

) were

affecting metabolism by affecting only the CYP2D6 enzyme compared to the parent compound affected which inhibits
two enzymes CYP 2D6 and CYP 2C19.

Inhibition of the CYP enzymes may cause increased cases of drug-drug interactions associated with a particular drug. The
parent drug interacts with more cytochrome enzymes compared to the ZINC000003825731, and ZINC000004222622
which only interact with one enzyme.

Ramelteon is a substrate for p-glycoprotein and hence may lead to the reduction of the concentration of the drugs in the
CNS. P-glycoproteins proteins work to reduce the concentration thus reducing intracellular drug accumulation leading to
treatment failure or increased concentration of the drugs used. The two molecules show fewer interactions with this
protein which may improve the bioavailability after administration and at the same time decrease dose of administration
of the drug and better clinical performance.

The molecules also have good oral bioavailability. They also pass and also cross the blood-brain barrier where they can
execute their function.

They are both synthesizable. The synthesizability of ZINC000003825731 is 2.91 and ZINC000004222622 is 3.28
compared to that of 2.91 of Ramelteon. The synthesizability index of a molecule indicates how easy a drug is to be
synthesized.

Figure 2.

Ramelteon interaction with melatonin receptor type 1B.

Page 11 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Triazolam and its analogues

Triazolam interacts with the GABA A receptor through van der Waals forces (

Figure 3

). These are forces that attract

neutral molecules to one another in gases solids and liquids. The binding may be weaker than that of other forms of
interactions, such as hydrogen bonding or electrostatic interactions. This may reduce the drug

s potency and at the same

time increase the drug selectivity.

37

Triazolam had a docking score of -8.1 (

Table 3

). Nine molecules had a better docking score compared to triazolam. Of the

nine molecules, only one molecule, ZINC000000702142, has poor penetration to the CNS this indicates that the molecule
may not be able to reach the site of action. All the molecules have good oral bioavailability. All the molecules are
substrates of the P-glycoprotein. This indicated that the molecules have less bioavailability.

34

Triazolam

ZINC000000000903, ZINC000010152022, and ZINC000000347721 do not interact with the CYP 3A4. The
CYP3A4 enzyme is involved in the metabolism of the majority of drugs

36

including Statins, Calcium channel

blockers, Benzodiazepines, Macrolide Antibiotics, Antidepressants, Antipsychotics, Immunosuppressants, and Opioids.
This makes it a potential for interaction with any drugs hence the need to be careful during co-administration.
ZINC000000000903 interacts with only one enzyme CYP 1A2. This molecule has then very few interactions as
compared to the other molecules.

36

These molecules studies have a higher LD50; ZINC000000000903(1080 mg/kg),

ZINC000010152022(1080 mg/kg), ZINC000000347721(1080 mg/kg) compared to triazolam (695 mg/kg) (

Table 3

).

Zolpidem and its analogs

Zolpidem interacts with the GABA A receptor through hydrogen bonds and van der Waal forces (

Figure 4

). This provides

a stronger receptor drug-receptor complex as compared to triazolam. interactions with, arginine, serine, methionine, and
leucine at positions 5 1, and 3, and two interactions between proline and arginine at locations 49 and 50 and 6 and
7 respectively.

Zolpidem has a docking score of -8.0. 10 molecules had a better docking score compared to the parent molecule
(

Table 4

). Of the 10 molecules ZINC000041288365 and ZINC000426519011 are substrates of P-glycoprotein trans-

porters indicating that the rest of the molecules have a good oral bioavailability. ZINC000065743121 and
ZINC000022054496 have very little interaction with CYP 2D6 molecule but interact with CYP 1A2,2C9, 2C19, and
3A4. The rest of the molecules interact with CYP 1A2,2C9, 2C19 2D6, and 3A4 as inhibitors. This increases the range of
drugs the molecules can interact with during the administration.

Figure 3.

Triazolam receptor interaction and GABA A receptor.

Page 12 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Zolpidem

Zolpidem has an LD50 of 695 mg/kg. ZINC000022054496 has the highest LD50 value of 1190 mg/kg.
ZINC000065743121 has an LD50 of 1000 mg/kg. which is better than the parent molecule. The two molecules can
be given at high concentrations compared to zolpidem without the patient experiencing serious adverse effects.

38

GI

absorption of the drugs of all the molecules is good indicating they can be issued orally. The molecules have no Lipinski
violations with a synthesizability index of above 2.5. This is an indication that the drug molecules can be synthesized.

Conclusions

The study identifies nine molecules from the Zinc database that have better docking scores pharmacokinetic and
toxicity profiles compared to the parent compounds. Ramelteon analogs ZINC000004222622, ZINC000003981996,
and ZINC000003825731 are potential drugs for development. They have good pharmacokinetic and toxicity profiles.
The drugs interact with either their MT1 and MT2 receptors better compared to the parent molecule. These molecules are
also synthesizable. Suvorexant analogs have a better docking score compared to the parent compound but the
pharmacokinetic profiles are not better than the parent molecule. Triazolam drug-like molecules, ZINC000000000903,
ZINC000039247014, ZINC000010152022, and ZINC000000347721 have better pharmacokinetic profiles compared to
the parent compound. They show better binding to the GABA-A receptor compared to the GABA-A receptor suggesting
better activity. These compounds are all synthesizable and with good GI bioavailability suggesting that the molecules can
be taken orally.

31

Zolpidem drug-like molecules ZINC000065743121 and ZINC000022054496 show better pharma-

cokinetic and toxicity profiles compared to the parent compound. All the molecules are synthesizable.

In-vitro

studies

should

be

conducted

for

the

9

molecules,

ZINC000003981996,

ZINC000003825731,

ZINC000004222622 ZINC000000000903, ZINC000039247014, ZINC000010152022, ZINC000065743121, and
ZINC000022054496 to ensure to determine their activity in the human subject. The molecules should undergo

in vivo

structure-activity relationship analysis for optimization before testing in their respective receptor.

Source data

The canonical smiles of the Parent compounds (Ramelteon, Zolpidem, Suvorexant and Triazolam) were obtained from

PubChem

Structural analogues of the Parent compounds were obtained from

SwissSimilarity

The pharmacokinetic profiles of the structural analogues and the Parent compounds were obtained from

SwissADME

Figure 4.

Zolpidem receptor interaction and GABA A receptor.

Page 13 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Protein Receptors of the parent drugs compounds and their analogues were obtained from the

Protein data bank

Toxicity profile of the parent compounds and their structural analogues were obtained from the

Protox

server

Underlying data

Figshare: Developing potential drugs for

insomnia

through computational analysis:

https://doi.org/10.6084/m9.figshare.

23674614

.

39

This project contains the following underlying data

- Pharmacokinetisc of Ramelteon and its analogues.csv

- Canonical smiles of results for Suvorexant analogues.csv

- Pharmacokinetisc of Suvorexant and its analogues.csv

- Cannonical smiles of triazolam analogues.csv

- Pharmacokinetisc of Triazolam and its analogues.csv

- Pharmacokinetisc of Zolpidem and its analogues.csv

- Canonical Smiles for Zolpidem analogues.csv

Extended data

Figshare: Developing potential drugs for

insomnia

through computational analysis:

https://doi.org/10.6084/m9.figshare.

23674614

.

39

- Figures.docx

- Results Summary.docx

- Pharmacokinetic Properties.docx

- Docking Scores.docx

- Toxicity Profiles.docx

Data are available under the terms of the

Creative Commons Attribution 4.0 International license

(CC-BY 4.0).

References

1.

Worley SL:

The extraordinary importance of sleep:

the detrimental effects of inadequate sleep on health and
public safety drive an explosion of sleep research.

P. T.

2018;

43

(12): 758

763.

PubMed Abstract

|

Free Full Text

2.

McCall WV, Benca RM, Rosenquist PB,

et al

.:

Reducing suicidal

ideation through insomnia treatment (REST-IT): a randomized
clinical trial.

Am. J. Psychiatr.

2019;

176

(11): 957

965.

PubMed Abstract

|

Publisher Full Text

|

Free Full Text

3.

Watson NF, Badr MS, Belenky G,

et al

.:

The recommended amount

of sleep for a healthy adult: A joint consensus statement of the
American Academy of Sleep Medicine and Sleep Research
Society.

Sleep.

2015;

38

(6): 843

844.

PubMed Abstract

|

Publisher Full Text

|

Free Full Text

4.

Han F, Chen J, Belkin-Rosen A,

et al

.:

Alzheimer

s Disease

Neuroimaging Initiative Reduced coupling between
cerebrospinal fluid flow and global brain activity is linked to

Alzheimer disease-related pathology.

PLoS Biol.

2021 Jun 1;

19

(6):

e3001233.

PubMed Abstract

|

Publisher Full Text

|

Free Full Text

5.

Marais AM, Osuch EO:

Insomnia: what is currently available.

S. Afr. Gen. Pract.

2020;

1

(1): 39

41.

Publisher Full Text

6.

Ishak WW, Bagot K, Thomas S,

et al

.:

Quality of life in

patients suffering from insomnia.

Innov. Clin. Neurosci.

2012;

9

(10): 13.

Reference Source

7.

Ohayon MM:

Epidemiology of insomnia: what we know

and what we still need to learn.

Sleep Med. Rev.

2002;

6

(2):

97

111.

PubMed Abstract

|

Publisher Full Text

|

Reference Source

8.

Kupfer DJ, Reynolds CF:

Management of insomnia.

N. Engl. J. Med.

1997;

336

(5): 341

346.

PubMed Abstract

|

Publisher Full Text

Page 14 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

9.

Tandon VR, Sharma S, Mahajan A,

et al

. :

Menopause and sleep

disorders.

J. Midlife Health.

2022;

13

(1): 26

33.

PubMed Abstract

|

Publisher Full Text

|

Free Full Text

10.

Buscemi N, Vandermeer B, Friesen C,

et al

.:

Manifestations and

management of chronic insomnia in adults: Summary.

AHRQ

evidence report summaries.

2005.

11.

Meltzer LJ, Hiruma LS, Avis KT,

et al

.:

Comparison of a web-based vs

in-person cognitive behavioral insomnia therapy for individuals
with comorbid conditions: A randomized clinical trial.

JAMA Netw.

Open.

2019;

2

(5): e194258

e194258.

Publisher Full Text

12.

Liu Y, Zhou L, Yang J,

et al

.:

The impact of urban migration on rural

communities in China.

J. Rural. Stud.

2019;

64

: 63

72.

Publisher Full Text

13.

Mattingly SM, Grover T, Martinez GJ,

et al

.:

The effects of seasons

and weather on sleep patterns measured through longitudinal
multimodal sensing.

NPJ Digit. Med.

2021;

4

: 76.

PubMed Abstract

|

Publisher Full Text

|

Free Full Text

14.

Anderson PO:

Treating Insomnia During Breastfeeding.

Breastfeed. Med.

2022;

17

(3): 207

209.

PubMed Abstract

|

Publisher Full Text

15.

Hugel H, Ellershaw JE, Cook L,

et al

.:

The prevalence, key causes

and management of insomnia in palliative care patients.

J. Pain

Symptom Manag.

2004;

27

(4): 316

321.

Publisher Full Text

16.

Abers MS, Shandera WX, Kass JS:

Neurological and Psychiatric

Adverse Effects of Antiretroviral Drugs.

CNS Drugs.

2014;

28

:

131

145.

PubMed Abstract

|

Publisher Full Text

17.

Malangu N:

Drugs inducing insomnia as an adverse effect.

Can

t sleep.

2012; 23

36.

Reference Source

18.

Riemann D, Baglioni C, Bassetti C,

et al

.:

European guidelines for

the diagnosis and treatment of insomnia.

J. Sleep Res.

2017;

26

(6):

675

700.

PubMed Abstract

|

Publisher Full Text

19.

Sanabria E, Cuenca RE, Esteso MÁ,

et al

.:

Benzodiazepines: They

re

used either as essential medicines or as toxic substances.

Toxins.

2021;

9

(2): 25.

Reference Source

20.

Lie JD, Tu KN, Shen DD,

et al

.:

Pharmacological treatment of

insomnia.

Pharmacy and Therapeutics.

2015;

40

(11): 759.

21.

Bounds CG, Nelson VL:

Benzodiazepines.

StatPearls.

StatPearls

Publishing; 2021.

Reference Source

22.

Edinoff AN, Wu N, Ghaffar YT,

et al

.:

Zolpidem: efficacy and side

effects for insomnia.

Health Psychol. Res.

2021;

9

(1).

Publisher Full Text

|

Reference Source

23.

Bhandari P, Sapra A:

Zaleplon.

2019.

Reference Source

24.

Brott NR, Reddivari AKR:

Doxylamine.

2019.

Reference Source

25.

Devi V, Shankar PK:

Ramelteon: A melatonin receptor agonist

for the treatment of insomnia.

J. Postgrad. Med.

2008 [cited 2023

Feb 17];

54

: 45

48.

Publisher Full Text

|

Reference Source

26.

Sys J, Van Cleynenbreugel S, Deschodt M,

et al

.:

Efficacy and safety

of non-benzodiazepine and non-Z-drug hypnotic medication for
insomnia in older people: a systematic literature review.

Eur. J. Clin. Pharmacol.

2020;

76

: 363

381.

Publisher Full Text

27.

Muehlan C, Vaillant C, Zenklusen I,

et al

.:

Clinical pharmacology,

efficacy, and safety of orexin receptor antagonists for the
treatment of insomnia disorders.

Expert Opin. Drug Metab. Toxicol.

2020;

16

(11): 1063

1078.

PubMed Abstract

|

Publisher Full Text

28.

Doxepin (Oral Route) Description and Brand Names.

Reference Source

29.

Bajorath J:

Integration of virtual and high-throughput

screening.

Nat. Rev. Drug Discov.

2002;

1

(11): 882

894.

Publisher Full Text

30.

Developing a Drug-like Natural Product Library|Journal of
Natural Products.

n.d. Accessed March 18, 2023.

Publisher Full Text

31.

Ligand-Based Screening - Creative Biolabs.

n.d. Accessed

March 6, 2023.

Reference Source

32.

Tian F, Tong B, Sun L,

et al

. :

N501Y mutation of spike protein in

SARS-CoV-2 strengthens its binding to receptor ACE2.

elife.

2021;

10

: e69091.

PubMed Abstract

|

Publisher Full Text

|

Free Full Text

33.

D

ą

browska K:

Phage Therapy: What Factors Shape Phage

Pharmacokinetics and Bioavailability? Systematic and Critical
Review.

Med. Res. Rev.

2019;

39

(5): 2000

2025.

PubMed Abstract

|

Publisher Full Text

|

Free Full Text

34.

Disrupting P-Glycoprotein Function in Clinical Settings: What
Can We Learn from the Fundamental Aspects of This
Transporter? - PMC.

n.d. Accessed March 18, 2023.

Reference Source

35.

Waals forces|Intermolecular Interactions & Applications|Britannica

.

(n.d.). Retrieved October 12, 2023.

Reference Source

|

Reference Source

36.

Zhang RX, Dong K, Wang Z,

et al

.:

Nanoparticulate drug delivery

strategies to address intestinal cytochrome P450 CYP3A4
metabolism towards personalized medicine.

Pharmaceutics.

2021;

13

(8): 1261.

PubMed Abstract

|

Publisher Full Text

|

Free Full Text

37.

Bast A:

Food toxicology.

Applied food science.

Wageningen

Academic Publishers; 2022; pp. 267

288.

38.

Enyoh CE, Maduka TO, Duru CE,

et al

.:

In sillico binding affinity

studies of microbial enzymatic degradation of plastics.

J. Hazard.

Mater. Adv.

2022;

6

: 100076.

Publisher Full Text

39.

Oronyi I: Developing potential drugs for

insomnia

through

computational analysis. [Data].

figshare.

2023.

Publisher Full Text

Page 15 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

Open Peer Review

Current Peer Review Status:

 

Version 1

Reviewer Report 30 January 2024

https://doi.org/10.5256/f1000research.148254.r233324

© 2024 Darwish K.

 This is an open access peer review report distributed under the terms of the 

Creative 

Commons Attribution License

, which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly cited.

Khaled Darwish

    

Suez Canal University, Ismailia, Egypt 

Authors of the presented manuscript computationally evaluated the potential activity of structural 

analogs of marketed anti-insomnia compounds against different sleep-associated biotargets. The 

manuscript is good however, several comments should be addressed:

A table/figure with all chemical structures of the investigated 20 compounds should be 

presented.

1. 

A brief introduction for the target surface topology, secondary protein structures, and 

pocket/binding site is recommended to allow readers to track the differential binding 

interaction and affinity of compounds towards the designated target.

2. 

Authors should elaborate more on the docking analysis. There is a need for explicit 

discussion regarding the residue-wise interactions between each compound and the target. 

Authors should mention the Hydrogen bond angles as well as their distances, since the 

strength of hydrogen bonding is based on both parameters in a way to ensure the 

adequacy of optimum hydrogen bonding. Moreover, the authors should mention the 

adopted distance criteria to determine the H-bond and Hydrophobic interactions.

3. 

Binding energies should be also calculated through mm-GBSA calculations using free on-

line platform (HawkDock or similar). This would provide a true affinity index for ligand-

target affinity. Additionally, this would allow efficient exploration for the nature of 

compound-target interactions where energy contribution terms (van def Waal, electrostatic, 

SASA solvation, polar solvation energies) could be estimated and then authors would 

identify which being most dominant through the MD simulation runs.

4. 

Authors should elaborate more on the docking figures. The 2D representation within 

Figures 2 and 3 are similar!!!! and the compound is not in its full structure. The 3D 

representations add nothing to the docking discussion, they only represent the target in 

cartoon structure without zooming in to the pocket/binding site highlighting the main 

compound-protein residue interactions as well as the compound predicted 3D orientation 

and conformation within the space.

5. 

Throughout a discussion section, authors should highlight the takeaway messages that 

would be adopted in future lead optimization and development based on the molecular 

docking and ADME analysis. Prospective/recommended structure modifications to improve 

6. 

 

Page 16 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

the ligand’s binding and interactions, as well as pharmacokinetics should be provided within 

the discussion and conclusion sections.

Finally, concerning the conclusion, authors are advised to elaborate more on the future of 

this work? Will you test more related drugs? Will you broaden the scope to other targets? 

What are the study limitations and what approaches could be conducted to further address 

them?

7. 

 

Is the work clearly and accurately presented and does it cite the current literature?

Partly

Is the study design appropriate and is the work technically sound?

Partly

Are sufficient details of methods and analysis provided to allow replication by others?

Partly

If applicable, is the statistical analysis and its interpretation appropriate?

Partly

Are all the source data underlying the results available to ensure full reproducibility?

No

Are the conclusions drawn adequately supported by the results?

Partly

Competing Interests:

 No competing interests were disclosed.

Reviewer Expertise:

 Drug discovery, drug development, molecular modelling

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

 

Page 17 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024

05b9a96b-b5cb-4def-8338-db99e6b787d9_135151_-_isaac_oronyi-html.html
background image

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more

The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

For pre-submission enquiries, contact 

research@f1000.com

 

Page 18 of 18

F1000Research 2023, 12:1332 Last updated: 12 MAR 2024