background image

Journal Pre-proof

hESC- and hiPSC-derived Schwann cells are Molecularly Comparable and

Functionally Equivalent

Kathryn R. Moss, Ruifa Mi, Riki Kawaguchi, Jeffrey T. Ehmsen, Qiang Shi, Paula I.

Vargas, Bipasha Mukherjee-Clavin, Gabsang Lee, Ahmet Höke

PII:

S2589-0042(24)01077-0

DOI:

https://doi.org/10.1016/j.isci.2024.109855

Reference:

ISCI 109855

To appear in:

ISCIENCE

Received Date: 7 November 2022
Revised Date: 11 February 2024
Accepted Date: 26 April 2024

Please cite this article as: Moss, K.R., Mi, R., Kawaguchi, R., Ehmsen, J.T., Shi, Q., Vargas,

P.I., Mukherjee-Clavin, B., Lee, G., Höke, A., hESC- and hiPSC-derived Schwann cells are

Molecularly Comparable and Functionally Equivalent 

ISCIENCE

 (2024), doi: 

https://doi.org/10.1016/

j.isci.2024.109855

.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition

of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of

record. This version will undergo additional copyediting, typesetting and review before it is published

in its final form, but we are providing this version to give early visibility of the article. Please note that,

during the production process, errors may be discovered which could affect the content, and all legal

disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Inc.

PIIS2589004224010770-html.html
background image

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

 
 
 
 

 

hESC- and hiPSC-derived Schwann cells are Molecularly 

Comparable and Functionally Equivalent 

 
 
 

Kathryn R. Moss

1

, Ruifa Mi

1

, Riki Kawaguchi

2

, Jeffrey T. Ehmsen

1

, Qiang Shi

1

, Paula I. Vargas

1

Bipasha Mukherjee-Clavin

1

, Gabsang Lee

1,3,4

, Ahmet Höke

1,3,

 

 
 
 

 

1

Department of Neurology, Neuromuscular Division; Johns Hopkins University School of Medicine; Baltimore, 

MD, 21205; USA 

 

2

Semel Institute for Neuroscience and Human Behavior; University of California, Los Angeles David Geffen 

School of Medicine; Los Angeles, CA, 90095; USA 

 

3

Department of Neuroscience; Johns Hopkins University School of Medicine; Baltimore, MD, 21205; USA 

 

4

Institute for Cell Engineering; Johns Hopkins University School of Medicine; Baltimore, MD, 21205; USA 

 
 
 
 
 
 
 
 
 
*Corresponding Author and Lead Contact: 
 
Ahmet Höke MD, PhD 
Johns Hopkins School of Medicine 
855 N. Wolfe St. 
Baltimore, MD 21205 
Tel: 410-955-2227 
Fax: 410-502-5459 
Email: ahoke@jhmi.edu 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

Summary 
 

 

Establishing robust models of human myelinating Schwann cells is critical for studying peripheral nerve 

injury and disease. Stem cell differentiation has emerged as a key human cell model and disease motivating 

development of Schwann cell differentiation protocols. Human embryonic stem cells (hESCs) are considered 

the ideal pluripotent cell but ethical concerns regarding their use have propelled the popularity of human 

induced pluripotent stem cells (hiPSCs). Given that the equivalence of hESCs and hiPSCs remains 

controversial, we sought to compare the molecular and functional equivalence of hESC- and hiPSC-derived 

Schwann cells generated with our previously reported protocol. We identified only modest transcriptome 

differences by RNA sequencing and insignificant proteome differences by antibody array. Additionally, both 

cell types comparably improved nerve regeneration and function in a chronic denervation and regeneration 

animal model. Our findings demonstrate that Schwann cells derived from hESCs and hiPSCs with our protocol 

are molecularly comparable and functionally equivalent. 

 

 

 
 
 

 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

Introduction 

 

Myelinating Schwann cell models are required to understand demyelinating diseases and axon 

regeneration in the peripheral nervous system. Developing human models is ideal given that translating findings 

from rodents to humans has proven difficult (i.e. ascorbic acid clinical trials for CMT1A) 

1

. Schwann cells can 

be harvested from human nerve biopsies, but this procedure is invasive and yields a finite quantity of cells. 

Therefore, a more practical strategy is to generate human Schwann cells from pluripotent cells. Although 

human embryonic stem cells (hESCs) are considered the gold-standard with respect to pluripotency, ethical 

concerns over their use make human induced pluripotent stem cells (hiPSCs) a more attractive approach 

2,3

However, the equivalence of hESCs and hiPSCs is a much-debated topic 

4

. Therefore, it is essential to 

determine if hESCs and hiPSCs differentiated with a particular protocol demonstrate molecular and functional 

equivalence.  

 

We have developed a differentiation protocol that generates sufficient quantities of Schwann cells that 

can subsequently be purified by fluorescence activated cell sorting (FACS) for ɑ4-integrin CD49d (CD49d) 

expression 

5

. Here, we generated hESC- and hiPSC-derived Schwann cells using our established protocol and 

performed transcriptomic, proteomic, and functional comparisons of these cells. Three established hESC lines 

and three iPSC lines previously generated from healthy control dermal fibroblasts were used. The hESC and 

hiPSC lines were efficiently differentiated into Schwann cells as demonstrated by expression of Schwann cell 

markers by immunocytochemistry and RNA sequencing. Differential expression analysis of the RNA 

sequencing dataset revealed only modest transcriptome differences and antibody array demonstrated 

insignificant proteome differences. hESC- and hiPSC-derived Schwann cell function was evaluated in a chronic 

denervation and regeneration animal model followed by behavioral, electrophysiological, and histological 

assessment. Transplantation of hESC- and hiPSC-derived Schwann cells equally improved nerve regeneration 

and function as compared to transplantation of heat killed hESC- and hiPSC-derived Schwann cells 

demonstrating functional equivalence of these cells.  

 

 

 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

Results 

hESC and iPSC Schwann Cell Differentiation 

 

Our previously established 21-day differentiation protocol was used to generate hESC- and hiPSC-

derived Schwann cells (Figure 1A) 

5

. Three common hESC lines were used (H1 [male], H7 [female] and H9 

[female]) and three iPSC lines previously generated from healthy control dermal fibroblasts were used 

(GM01582 [11-year-old female donor], GM02623 [61-year-old female donor] and GM08398 [8-year-old male 

donor]). CD49d-positive Schwann cells were purified by FACS 

5

. Representative CD49d-positive cell counts 

demonstrate a relatively high differentiation efficiency for both hESCs and hiPSCs (15-27%, Figure 1B-1C). 

However, comparing the differentiation efficiency between hESCs and hiPSCs is difficult to interpret due to 

multiple variables introduced by FACS sorting. Purified hESC- and hiPSC-derived Schwann cells were cultured 

and immunocytochemistry was performed at passage two to evaluate cell morphology and expression of the 

Schwann cell marker S100B (Figure 1D). Both hESC- and hiPSC-derived Schwann cells exhibit bi/tripolar 

morphology akin to cultured primary Schwann cells and highly express S100B. 

 

Modest Transcriptome Differences between hESC- and iPSC-derived Schwann Cells 

 

RNA was isolated from passage two hESC- and hiPSC-derived Schwann cells and transcriptome 

analysis was performed by RNA sequencing. One independent replicate for each stem cell line was included 

with three total hESC lines (n=3) compared to three total hiPSC lines (n=3). mRNA levels for each gene were 

averaged and compared between hESC- and hiPSC-derived Schwann cells. To confirm proper differentiation of 

the hESCs and hiPSCs into Schwann cells, Fragments Per Kilobase Million (FPKM) values of Schwann cell 

markers were analyzed. FPKM values for the integral Schwann cell/myelin genes 

Dystonin

 (

DST

, p=0.9193), 

Myelin Basic Protein

 (

MBP

, p=0.8058), 

Peripheral Myelin Protein 22

 (

PMP22

, p=0.8265), 

Erb-B2 Receptor 

Tyrosine Kinase 2

 (

ERBB2

, p-0.9112) and 

Nerve Growth Factor Receptor

 (

NGFR

, p=0.7581) were averaged 

and compared between hESC- and hiPSC-derived Schwann cells (Figure 2A). Comparing these average FPKM 

values to the ubiquitous genes 

Histone 1, H1b

 (

HIST1H1B

, hESC FPKM: Mean = 259.00, SD =75.19 ; hiPSC 

FPKM: Mean = 245.20, SD = 151.30) and 

ATP Synthase F1 Subunit Alpha

 (

ATP5A1

, hESC FPKM: Mean = 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

32.30, SD = 3.65; hiPSC FPKM: Mean = 30.63, SD = 4.28) demonstrates relatively high expression of the 

Schwann cell/myelin genes.  

Differential expression analysis of our dataset identified 142 genes (FDR-adjusted p<0.05); 20 genes 

demonstrated significantly higher mRNA levels in hESC-derived Schwann cells and 122 genes demonstrated 

significantly higher mRNA levels in hiPSC-derived Schwann cells (Figure 2B, Table S2). 16,590 genes were 

comparably expressed between hESC- and hiPSC-derived Schwann cells, including 46 integral Schwann cell 

genes (Figure S1A, Table S1). Ingenuity Pathway Analysis was performed on the 142 significant genes to 

identify significant canonical pathways (Figure 2C, Table S3). Both the significant genes and significant 

canonical pathways were further investigated for links to Schwann cell/myelin function. A link was established 

for the following canonical pathways: Estrogen Biosynthesis 

6

, Methylglyoxal Degradation III 

7

, CREB 

Signaling in Neurons 

8

, Melatonin Degradation II 

9,10

, Retinol Biosynthesis 

11

 and Wnt/Ca+ Pathway 

12

 (Figure 

2C). However, 

Wnt Family Member 5A

 (

WNT5A

, higher expression in iPSC-derived Schwann cells, FDR-

adjusted p=0.0289) is the only canonical pathway-implicated gene that is directly involved in Schwann cell 

function, specifically proliferation 

12

 (Figure 2D, Tables S2-S3). 

Interleukin 33

 (

IL33

, higher expression in 

iPSC-derived Schwann cells, FDR-adjusted p=0.0007) and potentially 

Formyl Peptide Receptor 1

 (

FPR1

higher expression in iPSC-derived Schwann cells, FDR-adjusted p=0.0001) are canonical pathway-implicated 

genes that are involved in oligodendrocyte function suggesting they may also play a role in Schwann cells 

13,14

 

(Figure 2D, Tables S2-S3). Of the remaining significant genes, only three have been demonstrated to have a 

clear connection to Schwann cells: 

Periostin

 (

POSTN

, higher expression in iPSC-derived Schwann cells, FDR-

adjusted p=3.69x10

-8

), 

Thioredoxin Interacting Protein

 (

TXNIP

, higher expression in iPSC-derived Schwann 

cells, FDR-adjusted p=0.0170) and 

Brain Derived Neurotrophic Factor

 (

BDNF

, higher expression in iPSC-

derived Schwann cells, FDR-adjusted p=0.0465) (Figure 2D, Table S2). POSTN and TXNIP are involved in 

Schwann cell migration 

15,16

 whereas BDNF plays a role in Schwann cell proliferation, migration and 

myelination 

17-19

. Twelve additional genes are potentially involved in Schwann cell/myelin function and/or play 

a role in oligodendrocytes (Figure 2D, Table S2).  

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

Given that many more genes demonstrate significantly increased mRNA levels in hiPSC-derived 

Schwann cells (122 increased in hiPSC, 20 increased in hESC), we also performed GO enrichment analysis on 

both sets of genes to help interpret this result 

20-22

. There was no significant enrichment for biological processes 

or molecular functions with the genes demonstrating increased mRNA levels in hESC-derived Schwann cells. 

However, there was significant enrichment for both biological processes and molecular functions with the genes 

demonstrating increased mRNA levels in hiPSC-derived Schwann cells. The significantly enriched biological 

processes are all generally related to development and the only two involving the nervous system are Cranial 

Nerve Morphogenesis (GO:0021602, FDR-adjusted p=0.0356) and Rhombomere Development (GO:0021546, 

FDR-adjusted p=0.0421) (Table S4). The significantly enriched molecular functions relate to DNA binding and 

transcription (Table S5). Taken together, our results indicate that there are minimal transcriptome differences 

between hESC- and hiPSC-derived Schwann cells and most of the significantly differentially expressed genes 

do not to have a bona fide or potential link to Schwann cell/myelin function.  

 We also evaluated the robustness of our differentiation protocol and confirmed the Schwann cell 

identity of our cells by generating Schwann cells from one hESC line (H9) and one hiPSC line (GM02623) and 

performing a second set of RNA sequencing with passage two cells using three independent replicates from 

each. FPKM values for Schwann cell markers were then compared between hESC- and hiPSC-derived Schwann 

cells and between RNA sequencing sets one and two. FPKM values from published datasets with rat Schwann 

cells were also included as a reference (data accessible at NCBI GEO database 

23

, accession numbers 

GSE211336 

24

 and GSE177037 

25

). Comparing the FPKM values for 

DST

MBP

PMP22

ERBB2

NGFR

AHNAK Nucleoprotein

 (

AHNAK

), 

S100 Calcium Binding Protein A6

 (

S100A6

) and 

S100 Calcium Binding 

Protein A10

 (

S100A10

) from RNA sequencing sets one and two demonstrates that our hESC- and hiPSC-

derived Schwann cells express Schwann cell markers although generally at lower levels than primary rodent 

Schwann cells suggesting our cells are immature Schwann cells (Figure S1B, Table S6). And although there is 

some variability, there is no statistically significant difference between hESC- and hiPSC-derived Schwann 

cells or between sets one and two (Figure S1B). These results demonstrate the reproducibility of our 

differentiation protocol to generate Schwann cells.  

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

 

Insignificant Proteome Differences between hESC- and iPSC-derived Schwann Cells

 

 

Cell lysates were collected from passage three hESC- and hiPSC-derived Schwann cells and proteome 

analysis was performed by antibody array. One independent replicate for each stem cell line was included with 

three total hESC lines (n=3) compared to three total hiPSC lines (n=3). Lysates were biotinylated and incubated 

with two membranes containing a total of 1000 antibodies recognizing human proteins. Relative protein levels 

were determined by immunoblotting for HRP-conjugated Streptavidin. Signal intensity for each protein was 

averaged and compared between hESC- and hiPSC-derived Schwann cells. This analysis identified zero 

proteins that were significantly differentially expressed (p<0.05, Figure 3A-3B, Table S7). Interestingly, pro-

BDNF (p=0.6219), BDNF (p=0.7774), IL33 (p=0.6219), five canonical pathway-implicated genes (none of 

which are directly linked to Schwann cell function: CCL26, CCL28, MMP1, SAA1, IL24; p=0.7774, 0.9260, 

0.7774, 0.6917, 0.5275, respectively) and SLPI (one of the twelve genes potentially linked to Schwann cell 

function, p=0.4471) protein levels were included in the antibody array. These results suggest that some of the 

significantly differentially expressed genes identified by RNA sequencing do not exhibit altered protein 

expression. Although several proteins demonstrated a large difference between hESC- and hiPSC-derived 

Schwann cells, none were significant due to high variability likely attributed to human genetic complexity 

(Figure 3B, Table S7). The proteins that were most divergently expressed and nearest to statistical significance 

are graphed in Figure 3C-3D. Given the large variability, the 18 most divergent expressed proteins and 4 

proteins nearest to statistical significance were assessed for equal variance by F-test analysis. Btk, FGFR1 and 

BNP are the only proteins in this group with unequal variance (Figure 3C-3D). The antibody array data for all 

proteins were also analyzed by unpaired t-test with Welch correction to account for potential unequal variance 

but no significant differentially expressed proteins were identified (Table S8). And only a portion of most 

divergently expressed and nearest to statistical significance proteins have been linked to Schwann cell/myelin 

function: Fibronectin (p=0.4089), Fibrinogen (p=0.3715) and Integrin alpha V (p=0.5132) for extracellular 

matrix 

26-28

,  FGFR1 (p=0.4121) for differentiation and migration 

29,30

,  BNP (p=0.3772) for proliferation 

31

 and 

Progranulin (p=0.1625) and MIF (p=0.1303) for nerve regeneration 

32,33

 (Figure 3C-3D).  

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

 

Functional Equivalence of hESC- and iPSC-derived Schwann Cells 

 

Given that hESC- and hiPSC-derived Schwann cells are molecularly comparable, the functional 

equivalence was evaluated. A chronic denervation and regeneration mouse model was used to determine the 

ability of hESC- and hiPSC-derived Schwann cells to enhance peripheral nerve regeneration 

in vivo 

34

. Alive 

and heat killed hESC- and hiPSC-derived Schwann cells were transplanted and regeneration of the transected 

peroneal nerve into the denervated tibial nerve was evaluated histologically, electrophysiologically and 

behaviorally. The average number of myelinated axons regenerated 5-7mm distal to the peroneal-tibial nerve 

repair site was equivalent between alive hESC- and hiPSC-derived Schwann cells (p=0.9939, Figure 4A-4B). 

Regenerated myelinated axons were also equivalent between heat killed hESC- and hiPSC-derived Schwann 

cells (p=0.8341) but were significantly increased with alive hESC- and hiPSC-derived Schwann cell 

transplantation as compared to heat killed (p=0.0005, Figure 4A-4B). Sciatic nerve compound muscle action 

potentials (CMAPs) recorded from the distal foot muscles exhibited comparable amplitudes and latencies with 

alive hESC- and hiPSC-derived Schwann cells (amp. p=0.8458, lat. p=0.1988, Figure 4C-4E). Again, CMAP 

amplitudes and latencies were comparable between heat killed hESC- and hiPSC-derived Schwann cells (amp. 

p=0.9606, lat. P=0.7916) but amplitudes were significantly increased (p=0.0033) and latencies were 

significantly reduced (p=0.0092) with alive hESC- and hiPSC-derived Schwann cell transplantation as 

compared to heat killed (Figure 4C-4E). A skilled walking behavioral test was used to quantify locomotion as a 

readout of nerve and muscle function 

35

. Given that Schwann cells derived from all hESC and hiPSC lines 

comparably improved myelinated axon number and nerve electrophysiology, transplantation was performed 

with Schwann cells derived from only one hESC and one hiPSC line. H9 (hESC) and GM01582 (hiPSC) were 

randomly selected for this assay. After training the mice to walk on a ladder beam, their ability to grasp each 

rung was subsequently scored as described using an established protocol 

35

. The resulting injured hindlimb 

scores were equivalent between alive hESC- and hiPSC-derived Schwann cells (p=0.0783, Figure 4F). These 

findings suggest that hESC- and hiPSC-derived Schwann cells promote axon regeneration and reinnervation of 

denervated distal foot muscles to a similar extent.

 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

Discussion

 

 

The field of stem cell differentiation is progressing at a rapid pace. Optimized protocols that improve 

differentiation efficiency and efficacy are continuously being developed. Schwann cell differentiation protocols 

are following this trajectory and have gone through several iterations 

36,37

. We have developed a Schwann cell 

differentiation protocol that is efficient and reproducible 

5

. The resulting cells exhibit molecular, morphological, 

and functional characteristics of Schwann cells 

5

. Even though the equivalence of hESCs and hiPSCs is 

controversial, reports comparing cells differentiated from each are scarce. However, in genetically matched 

hESC and hiPSC lines, transcriptomic variation arising from genetic background overshadows variation due to 

cellular origin 

38

. Here, we sought to determine if hESC- and hiPSC-derived Schwann cells generated with our 

protocol are molecularly and functionally equivalent in order to justify the sole use of iPSCs for future studies.  

 

hESCs and hiPSCs were similarly differentiated with our protocol and the resulting hESC- and hiPSC-

derived Schwann cells were molecularly comparable. Only 0.85% of genes (142 out of 16,590) detected by 

RNA sequencing were significantly differentially expressed and only a few of these had a concrete (2.82%, 4 

out of 142) or potential (9.86%, 14 out of 142) link to Schwann cell/myelin function. 

BDNF

WNT5A

POSTN

 

and 

TXNIP

 are the significantly differentially expressed genes at the mRNA level with an established role in 

Schwann cells. Interestingly, 86% of the significantly differentially expressed genes exhibited increased 

expression in iPSC-derived Schwann cells and these four genes belong to this group. GO enrichment analysis of 

genes increased in iPSC-derived Schwann cells as compared to hESC-derived Schwann cells did not reveal 

major links to nervous system function or provide much insight into the reason for this phenomenon. The 

molecular similarity of hESC- and hiPSC-derived Schwann cells was also compared by antibody array. None of 

the 1000 proteins quantified with this assay, including pro-BDNF and BDNF, were significantly differentially 

expressed. Several additional integral Schwann cell/myelin proteins were also evaluated by the antibody array 

including ERBB2 (p=0.7774), ERBB3 (p=0.7774), ERBB4 (p=0.7643), GDNF (p=0.9595), NGF (p=0.7644), 

NGFR (p=0.3739), S100A4 (p=0.6219), S100A6 (p=0.4245) and S100A10 (p=0.3658). We cannot make 

conclusions about why some genes are elevated at the mRNA level but not the protein level, but this is likely 

due to complex post-transcriptional regulation that is involved in controlling the expression of these critically 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

10 

important genes. Our results indicate that hESC- and hiPSC-derived Schwann cells generated with our 

differentiation protocol are molecularly comparable but identify genes that should be taken into consideration 

for future experimentation and may contribute to line-to-line variability.  

 

In support of our molecular analysis, we also demonstrated that transplanted hESC- and hiPSC-derived 

Schwann cells function comparably to promote regeneration and reinnervation in a chronic denervation and 

regeneration mouse model. It is well appreciated that some of the transplanted cells likely myelinated 

regenerating axons, but the majority primarily promoted regeneration by providing trophic support 

39,40

Myelinated axon number, CMAP amplitude and latency and skilled walking were all equally improved with 

transplantation of alive hESC- and hiPSC-derived Schwann cells as compared to heat killed cells. These 

findings further validate our Schwann cell differentiation protocol and provide evidence supporting the 

molecular and functional equivalence of Schwann cells derived from hESCs and hiPSCs using this protocol. 

Given the ethical concerns regarding the use of hESCs and the data we report here, we believe iPSCs are an 

ideal platform for generating human Schwann cells, but it is best to be mindful of the minor differences that we 

identified as compared to hESC-derived Schwann cells. 

 

Future studies based on this work include exploring the myelination potential of hESC- and hiPSC-

derived Schwann cells to determine if gene expression changes in these cells become more evident with 

maturation and affect myelin sheath function. Unfortunately, current Schwann cell differentiation protocols, 

including our own, are either unable to myelinate or very inefficiently myelinate neurons 

in vitro

 

5,37,41

. It may 

be worth exploring functional differences in hESC- and hiPSC-derived Schwann cells caused by gene 

expression changes like cell proliferation, migration and elongation. We would also like to note that 

differentiation protocols requiring FACS sorting introduce multiple variables into the process of differentiation 

Schwann cells. Although there are benefits to harvesting pure populations of Schwann cells, it would also be 

advantageous to differentiate Schwann cells and neurons in a co-culture or organoid system in order to create 

peripheral nerve-like environments with mature myelin sheaths. As Schwann cell differentiation protocols 

continue to improve, protocols capable of producing pure cultured Schwann cells resembling primary cultured 

Schwann cells and co-cultures with neurons ensheathed by mature myelin will likely become common practice. 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

11 

Limitations of the Study 
 

 

Limitations of this study include not being able to compare CD49d-positive cells to CD49d-negative 

cells to support the conversion to Schwann cells and not being able to analyze the subtypes of Schwann cells 

differentiated from hESCs and hiPSCs. When developing the Schwann cell differentiation protocol 

5

immunostaining prior to FACS sorting revealed that non-Schwann cell cells generated by this differentiation 

protocol included Tuj1-positive neurons, presumably sensory neurons since they are neural crest derivatives. 

We presumed the remaining cells were a combination of neural crest cells, melanocytes, other neural crest 

derivatives and possibly connective tissue like fibroblasts, but we have not thoroughly characterized them due 

to low survival after FACs sorting. Additionally, it would be interesting to define the subtype composition of 

hESC- and hiPSC-derived Schwann cells which could be explored in future studies using single-cell RNA 

sequencing. 

Another

 

limitation of this study was only transplanting Schwann cells derived from one hESC and one 

hiPSC line for the skilled walking assay to evaluate recovery in the chronic denervation and regeneration animal 

model. However, Schwann cells derived from all three hESC and all three hiPSC lines were used to evaluate 

recovery of tibial nerve myelinated fiber density, CMAP amplitude and CMAP latency in this model. The stem 

cell lines used for the skilled walking assay were randomly selected. Given that hESC- and hiPSC-derived 

Schwann cells are molecularly comparable and that hESC- and hiPSC-derived Schwann cells equally improved 

tibial nerve myelinated fiber density, CMAP amplitude and CMAP latency, we elected to use only one hESC 

and one hiPSC line for functional assessment given that these experiments are labor intensive and to conserve 

mice. 

 

 

 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

12 

Acknowledgements 

 

This work was supported by Maryland Stem cell Research Fund Discovery grant (2014-MSCRFI-0715) 

and Dr. Miriam and Sheldon G. Adelson Medical Research Foundation to Dr. Ahmet Hoke. Dr. Kathryn Moss 

was supported by a Maryland Stem Cell Research Fund Postdoctoral Fellowship and is currently supported by 

an NIH K22 Award (K22NS125057) and a Johns Hopkins Merkin Peripheral Neuropathy and Nerve 

Regeneration Center Grant. 

 
 
 
 
Author Contributions 
 

Conceptualization, R.M., G.L. and A.H.; Methodology, B.M.-C., G.L.; Investigation, K.R.M., R.M., 

R.K., J.T.E., Q.S., P.I.V.; Formal Analysis, K.R.M., R.M., R.K.; Writing – Original Draft, K.R.M., A.H. 

Writing – Review & Editing, K.R.M., A.H.; Visualization, K.R.M.; Supervision, G.L. and A.H.; Funding 

Acquisition, A.H. 

 

 
 
Declaration of Interests 
 

 

The authors have declared no competing interests.  

 

 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

13 

Figure Titles and Legends 

 

Figure 1. hESC and hiPSC cells are efficiently differentiated into Schwann cells. 

(A) Diagram of the 21-

day Schwann cell differentiation protocol. (B) Representative cells count graphs of CD49d FACS sorted hESC- 

and hiPSC-derived Schwann cells. (C) Representative Schwann cell differentiation efficiencies for each hESC 

and hiPSC line (n=1 each). (D) Representative images of passage two CD49d-positive hESC- and hiPSC-

derived Schwann cells processed for immunocytochemistry with an anti-S100B antibody (red), Phalloidin to 

label F-actin (green) and DAPI (blue). Scale bar, 50μm. 

 

Figure 2. Minimal transcriptome differences between

 

hESC- and hiPSC-derived Schwann cells. 

RNA was 

isolated from passage two hESC- and hiPSC-derived Schwann cells and RNA sequencing was performed. 

mRNA levels for each gene were averaged and compared between hESC- and hiPSC-derived Schwann cells 

(n=1 per stem cell line, n=3 per stem cell type). (A) Average FPKM values of integral Schwann cell/myelin 

genes. Data are represented as mean ± SEM. Equal variance was confirmed by F-test analysis. Unpaired t-test, 

n.s. = not significant (p>0.05). (B) Differential expression analysis data displayed by volcano plot. Blue data 

points are statistically significant (142 genes, FDR-adjusted p<0.05).  (C) Statistically significant canonical 

pathways identified by Ingenuity Pathway Analysis for the 142 significant genes. Light blue bars have 

demonstrated links to Schwann cell/myelin function whereas white bars do not. (D) Significant differentially 

expressed genes with concrete (light blue bars) and potential (light pink bars) links to Schwann cell/myelin 

function. FDR-adjusted p-value are shown in parentheses.  

 

Figure 3.

 

Insignificant proteome differences between

 

hESC- and hiPSC-derived Schwann cells.

 Protein 

lysates were collected from passage three hESC- and hiPSC-derived Schwann cells and antibody array was 

performed. Signal intensity for each protein was averaged and compared between hESC- and hiPSC-derived 

Schwann cells (n=1 per stem cell line, n=3 per stem cell type). 

(

A) Representative immunoblots are shown. (B) 

Differential expression results displayed by volcano plot. Data were analyzed by multiple unpaired t-tests with 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

14 

the false discovery rate approach two-stage step-up method of Benjamini, Kreiger and Yekutieli method 

(desired FDR = 1%, significant p<0.05). The red line indicates statistical significance (p<0.05) with no data 

points reaching significance. The gray boxes highlight proteins that were most divergently expressed (graphed 

in (C)) and nearest to statistical significance (graphed in (D)). Average expression levels of (C) the most 

divergently expressed proteins and (D) the proteins nearest to statistical significance. Data are represented as 

mean ± SD. The p-values for those nearest to statistical significance are shown in parentheses. Proteins in red 

have concrete links to Schwann cell/myelin function. Equal variance was assessed by F-test analysis and 

proteins with unequal variance are outlined with a black box. The p-values from both unpaired t-tests (first p-

value) and unpaired t-tests with Welch correction (second p-value) are shown for these proteins in parentheses.  

All data are not significant for both analyses (p>0.05). 

 

Figure 4. hESC- and hiPSC-derived Schwann cells equally promote regeneration of chronically 

denervated peripheral nerves. 

Tibial nerves were chronically denervated, repaired with transected peroneal 

nerve and heat killed or alive hESC- and hiPSC-derived Schwann cells were injected distal to the lesion. 

Histological, electrophysiological, and behavioral recovery were evaluated three months post-transplantation. 

(A)

 

Representative images of toluidine blue stained tibial nerve cross-sections with transplanted heat killed or 

alive hESC- and hiPSC-derived Schwann cells. Scale bar, 10μm. (B) Quantification of tibial nerve myelinated 

fiber number. (C) Representative sciatic nerve CMAP traces with transplanted heat killed or alive hESC- and 

hiPSC-derived Schwann cells. Quantification of CMAP (D)

 

amplitude and (E)

 

latency. (F)

 

Skilled walking was 

assessed by ladder beam test with transplanted alive hESC- and hiPSC-derived Schwann cells. Data are 

represented as mean ± SEM. Heat killed hESC and hiPSC data were pooled (light pink bars) and compared to 

pooled alive hESC and hiPSC data (light blue bars) to demonstrate improvement with alive cell transplantation. 

Equal variance was assessed by F-test analysis and the pooled heat killed compared to pooled alive datasets all 

demonstrated unequal variance (light pink/light blue bar graphs). The hESC- as compared to hiPSC-derived 

Schwann cells datasets (black/white bar graphs) were analyzed by unpaired t-test due to equal variance and the 

pooled heat killed compared to pooled alive datasets (light pink/light blue bar graphs) were compared by 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

15 

unpaired t-test with Welch correction. * = significant (p<0.05), n.s. = not significant (p>0.05). Schwann cells 

derived from all six stem cell lines were evaluated by nerve morphometry and electrophysiology (n for 

histology/electrophysiology: alive - H1 n=2/2, H7 n=3/3, H9 n=3/4, GM01582 n=3/4, GM02623 n=4/4, 

GM08398 n=4/4, heat killed - H9 n=3/3, GM01582 n=5/5), whereas only H9 and GM01582 were assessed 

behaviorally (n=4 each).  

 

 

 

 

 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

16 

STAR Methods 

RESOURCE AVAILABILITY 

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 

the lead contact, Ahmet Höke (ahoke@jhmi.edu). 

 

Materials Availability 

 

This study did not generate new unique reagents. Further information and requests for resources such as 

reagents listed in key resources table should be directed to the lead contact. 

 

Data and Code Availability 

 

Both RNA-seq datasets have been deposited at GEO and are publicly available as of the date of 

publication. Accession numbers are listed in the key resources table. Original antibody array blots have 

been deposited at Mendeley and are publicly available as of the date of publication. The DOI is listed in 

the key resources table. Microscopy and nerve conduction data reported in this paper will be shared by 

the lead contact upon request. 

 

This paper does not report original code.  

 

Any additional information required to reanalyze the data reported in this paper is available from the 

lead contact upon request. 

 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 

Human Cells 

 

Stem cell experiments were conducted with approval from the Johns Hopkins Institutional Stem Cell 

Research Oversight Committee. The three human embryonic stem cell lines used in this study (H1 [male, 

ethnicity/race unknown], H7 [female, ethnicity/race unknown] and H9 [female, ethnicity/race unknown]) were 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

17 

purchased from WiCell Research Institute. The three human induced pluripotent stem cells lines used in this 

study (GM01582 [11-year-old Caucasian female donor], GM02623 [61-year-old Caucasian female donor] and 

GM08398 [8-year-old Caucasian male donor]) were previously generated by Gabsang Lee from healthy control 

dermal fibroblasts purchased from Coriell Institute for Medical Research. RRID for each are provided in the 

key resources table. All stem cell lines were confirmed to have normal chromosome ploidy by karyotype 

analysis; hESCs results are recorded in the Human Pluripotent Stem Cell Registry and hiPSCs were evaluated 

after they were generated by Gabsang Lee. No apparent differences were detected due to biological sex, but our 

sample sizes were likely insufficient to definitively conclude this.  

All stem cell lines were cultured on Mitomycin C-treated CF6-Neo mouse embryonic fibroblast feeder 

cells (MEFs, Thermo Fisher Scientific, A34964). Six-well plates were coated with 0.1% gelatin in water 

(StemCell Technologies, 07903) and incubated at 37

 C for 30 minutes prior to seeding approximately 300,000 

MEFs per well in MEF medium (DMEM [Thermo Fisher Scientific, 11965092] supplemented with 10% FBS 

[Thermo Fisher Scientific, 26140095]). MEFs were cultured in 5% CO

2

 at 37º C overnight before seeding stem 

cells. Thawed or passaged stem cells were seeded at approximately 20% confluency per well on MEF feeder 

plates in stem cell medium (400ml DMEM/F-12 [Thermo Fisher Scientific, 11330032], 100ml knockout serum 

replacement [Thermo Fisher Scientific, 10828028], 5ml 100x MEM non-essential amino acids solution 

[Thermo Fisher Scientific, 11140050], 2.5ml 200mM L-glutamine [Thermo Fisher Scientific, 25030081], 500

2-mercaptoethanol [Thermo Fisher Scientific, 21985023] and 6ng/ml human basic fibroblast growth factor 

[bFGF, Thermo Fisher Scientific, PHG0264, prepared in DPBS, no Calcium, no Magnesium {Thermo Fisher 

Scientific, 14190144}]). Undifferentiated stem cells and differentiating/differentiated Schwann cells were 

cultured in 5% CO

2

 at 37º C in an incubator used solely for human stem cells which was routinely screened for 

mycoplasma contamination. Medium was changed daily, and cells were passaged 1:3 using 5U/ml dispase 

solution (StemCell Technologies, 07913) approximately every seven days after removing spontaneously 

differentiated cells/colonies with a P200 pipet tip.  

 
Mouse Strains 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

18 

Animal experiments were conducted with approval from the Johns Hopkins Animal Care and Use 

Committee. Adult male NOD SCID mice (aged three-months) were obtained from the Jackson Laboratory. 

RRID provided in the key resources table. Male mice were exclusively used given that no apparent biological 

sex differences were observed in hESC- and hiPSC-derived Schwann cells and to minimize variability due to 

the estrous cycle. NOD SCID mice are homozygous for the 

Prkdc

scid

 

mutation resulting in the absence of 

functional T cells and B cells, lymphopenia and hypogammaglobulinemia. They are able to accept allogeneic 

and xenogeneic grafts making them an ideal model for cell transplantation experiments. Mice used for this 

study were purchased directly from the Jackson Laboratory, so their backcrossing status, weight and husbandry 

conditions were monitored and standardized though the Jackson Laboratory. Littermate males were shipped and 

housed together in individually ventilated cages (Allentown Caging Equipment, PC75JHT) with corn cob 

bedding (Teklad, 7097). Mice were provided a single cotton nestlet (Ancare Nestlets, NES3600) for enrichment, 

fed autoclaved global 18% protein extruded rodent diet (Teklad, 2018SX) and provided reverse-osmosis-treated 

water via an Edstrom automated in-cage watering system (Avidity Science LLC). Cages were changed every 

two weeks and colony mice were monitored quarterly for pathogens. Mice were randomly assigned to groups 

for Schwann cell transplantation experiments and differences due to biological sex were not evaluated due to 

the sole use of male mice. 

 

METHOD DETAILS 

Schwann Cell Differentiation  

MEF-conditioned stem cell medium was prepared by adding stem cell medium to MEF feeder plates, 

collecting the medium after 24 hours and freezing at -20

 C. Gelatin coated 10cm dishes (one per three wells of 

stem cells) were prepared by incubating with 0.1% gelatin in water at 37

 C for at least 30 minutes. Matrigel 

coated 24-well plates were prepared by adding ice-cold LDEV-free, hESC-qualified matrigel (Corning Life 

Sciences, 354277) to each well (thawed at 4

 C overnight) and incubating at room temperature for at least one 

hour. After removing spontaneously differentiated cells/colonies with a P200 pipet tip, cells were incubated 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

19 

with accutase (Innovative Cell Technologies, Inc., AT104) at 37

 C for 20 minutes. Stem cell medium was 

added to each well, the cells were gently triturated and then passed through a 40

m cell strainer (Corning Life 

Sciences, 352340). The cells were topped up to 15ml with stem cell medium and centrifuged at 200xg for five 

minutes at 20

 C. Supernatant was removed, and cells were resuspended in MEF-conditioned stem cell medium 

supplemented with 6ng/ul bFGF and 10

M Y-27632 (Cell Signaling Technology, 13624). Cells were seeded 

onto matrigel coated 24-well plates, 60,000 cells per well, and medium was changed every two days until 

reaching 80% confluency which generally takes one to three days. 

The stem cells were then differentiated into Schwann cells following a protocol developed by the Lee 

lab 

5

. This involved treatment with small molecules in KSR medium (415ml knockout DMEM [Thermo Fisher 

Scientific, 10829018], 75ml knockout serum replacement, 5ml 100x MEM non-essential amino acids solution, 

2.5ml 200mM L-glutamine and 500

l 2-mercaptoethanol) and/or NB medium (480ml neurobasal medium 

[Thermo Fisher Scientific, 21103049], 10ml B27 Supplement [Thermo Fisher Scientific, 17504044], 5ml N2 

Supplement [Thermo Fisher Scientific, 17502048] and 2.5ml 200mM L-glutamine). On differentiation days 

zero and one (cells at 80% confluency), all of the stem cell medium was gently removed by aspiration and 500ul 

of KSR medium supplemented with 10μM SB-431542 (Tocris Bioscience, 1614) and 500nM LDN-193189 

(Tocris Bioscience, 6053) was added to each well. Most of the medium was removed to prevent drying on all 

subsequent medium changes (400

l removed per well, adding 500

l fresh medium each time). One 

differentiation days two and three, the medium was changed to KSR medium supplemented with 10μM SB-

431542, 500nM LDN-193189, 3μM CHIR 99021 (Tocris Bioscience, 4423) and 10μM DAPT (Tocris 

Bioscience, 2634). On differentiation days four and five, the medium was changed to KSR/NB (3:1) medium 

supplemented with 3μM CHIR 99021 and 10μM DAPT. On differentiation days six and seven, the medium was 

changed to KSR/NB (1:1) medium supplemented with 3μM CHIR 99021 and 10μM DAPT. On differentiation 

days eight and nine, the medium was changed to KSR/NB (1:3) medium supplemented with 3μM CHIR 99021 

and 10μM DAPT. On differentiation days 10 through 20, the medium was changed to NB medium 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

20 

supplemented with 200μM dibutyrl cyclic AMP (Sigma-Aldrich, D0627) and 200μM L-ascorbic acid (BioGems 

International, Inc., 5088177).  

 

Schwann Cell FACS Sorting and Culture

 

Matrigel coated 12-well plates were prepared by adding ice-cold matrigel to each well (thawed at 4

 C 

overnight) and incubating at room temperature for at least one hour. Poly-D-lysine (PDL, Sigma-Aldrich, 

P7280, prepared in water) coated coverslips were prepared by placing autoclaved 12mm diameter #1.5 

coverslips into a 24-well plate and dotting 100μl of 100μg/ml PDL onto each coverslip 50μl at a time. The plate 

was incubated at 37

 C for at least 30 minutes and then washed several times with PBS (Thermo Fisher 

Scientific, 10010023). Schwann cells were purified by Fluorescence Activated Cell Sorting (FACS) sorting on 

differentiation day 21. The medium was gently aspirated, and the cells were washed once with PBS. After 

removing the PBS, ReLeSR (StemCell Technologies, 100-0483) was added to each well, incubated at room 

temperature for one minute and removed by gentle aspiration. The dry plate was incubated at 37

 C for three 

minutes and then accutase was added to each well. The plate was tapped against a hard surface five times and 

the cells were lifted by pipetting with P1000 pipet. The cells in accutase were transferred to a 15ml tube and 

additional accutase was added up to 5ml. The tube was incubated in a 37

 C water bath for 3 minutes with 

gently agitation every minute. The cells were triturated in a clean 15ml tube 1ml at a time which generally 

required 8-10 passes through the pipet tip. The dissociated cells were passed through a 40

m cell strainer and 

MEF medium was added up to 15ml. The cells were centrifuged at 200xg for 10 minutes at 10

 C. Supernatant 

was removed, and cells were resuspended in 1ml FACS Buffer (40ml DPBS, no calcium, no magnesium, 10ml 

MEF Medium and 100μl 10mg/ml DNaseI [Sigma-Aldrich, DN25]) supplemented with 10

M Y-27632. 50μl 

of cells were transferred to a 1.5ml tube to use as unstained control and store on ice. The remaining cells were 

transferred to a 1.5ml tube, 10μl PE-conjugated anti-CD49d antibody (R&D Systems, FAB1354P) was added 

and the cells were rotated in the dark at 4

 C for 30 minutes. The cells were transferred to a 15ml tube, 10ml 

FACS Buffer supplemented with 10

M Y-27632 was added and the cells were centrifuged at 200xg for 5 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

21 

minutes at 10

 C. Supernatant was removed, cells were resuspended in 10ml FACS Buffer supplemented with 

10

M Y-27632 and the cells were centrifuged at 200xg for 5 minutes at 10

 C. Supernatant was removed and 

the cells were resuspended in FACS Buffer supplemented with 10

M Y-27632 at a concentration of 

approximately five million cells/ml. The cells were transported on ice and sorted at the Johns Hopkins FACS 

core facility. Singlet CD49d-positive Schwann cells were collected into a tube containing Schwann cell medium 

(ScienCell Research Laboratories, 1701, 500ml basal medium, 25ml FBS, 5ml Schwann cell growth 

supplement and 5ml antibiotic solution) supplemented with 10

M Y-27632. Schwann cells were seeded onto 

matrigel coated 12-well plates, 70,000 cells per well, and PDL coated coverslips in 24-well plates, 35,000 cells 

per well, in Schwann cell medium supplemented with 10

M Y-27632 (passage one). Medium was changed 

every two days with Schwann cell medium without supplement. Schwann cells were passaged after reaching 

80% confluency which typically required one week. Schwann cells were passaged 1:3 using 0.05% trypsin-

EDTA (Thermo Fisher Scientific, 25300054). Passage two hESC- and iPSC-derived Schwann cells were used 

for RNA sequencing and immunocytochemistry. Passage three hESC- and iPSC-derived Schwann cells were 

used for antibody array and transplantation.  

 

Schwann Cell Immunocytochemistry

 

Passage two hESC- and iPSC-derived Schwann cells plated on PDL coated coverslips were fixed with 

4% paraformaldehyde (Electron Microscopy Sciences, 15714) in PBS for 15 minutes at room temperature after 

reaching 70-80% confluency. The paraformaldehyde was discarded, and the Schwann cell were washed with 

PBS three times for 10 minutes each. The Schwann cells were permeabilized with 0.1% Triton X-100 (Sigma-

Aldrich, T9284) in PBS for 15 minutes with gentle agitation at room temperature and then washed with PBS 

three times with gentle agitation for five minutes each. Schwann cells were blocked with 5% Normal Goat 

Serum (Jackson ImmunoResearch Laboratories, Inc., 005-000-121) in PBS for one hour with gentle agitation at 

room temperature and incubated with primary antibody (1:200 rabbit anti-S100B [Sigma-Aldrich, 

HPA015768]) overnight with gentle agitation at 4

 C. Schwann cells were washed with PBS three times with 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

22 

gentle agitation for 10 minutes each and then incubated with secondary antibody (1:400 Alexa Fluor 488 

Phalloidin [Thermo Fisher Scientific, A12379] and 1:1000 goat anti-rabbit Alexa Fluor 568 [Thermo Fisher 

Scientific, A11036]) for one hour with gentle agitation at room temperature. Schwann cells were washed with 

PBS three times with gentle agitation for 10 minutes each and mounted onto slides with ProLong Gold Antifade 

Mountant with DAPI (Thermo Fisher Scientifc, P36931). Z-stacks were acquired using a Zeiss Axio Imager Z1 

with a 20X air objective using Zeiss Blue software and final images were prepared with Imaris (Oxford 

Instruments). 

 

RNA Isolation and RNA Sequencing 

 

RNA was isolated from hESC- and iPSC-derived Schwann cells at passage two after reaching 90% 

confluency with TRIzol (Thermo Fisher Scientific, 15596026) following the manufacturer’s protocol and 

subsequently purified with a RNeasy Mini Kit (Qiagen, 74104). The Johns Hopkins Experimental and 

Computational Genomics core facility evaluated RNA quality with a bioanalyzer, and libraries were prepared 

using TruSeq Stranded RNA (100 ng, Illumina). Preparation included 100bp paired end reads and sequencing 

run was carried out using an Illumina sequencing platform. Quality control (QC) was performed on base 

qualities and nucleotide composition of sequences, to identify problems in library preparation or sequencing. 

Sequence quality for the dataset described here was sufficient that no reads were trimmed or filtered before 

input to the alignment stage. Reads were counted using HT-seq (version 2.0) 

42

 and aligned to the latest Human 

reference genome (GRch38) using the STAR spliced read aligner (version 2.4.0) 

43

.  Average input read counts 

were 66.7M per sample (range 54.8 to 76.30M) and average percentage of uniquely aligned reads was 80.6% 

(range 72.3% to 88.7%). Low count transcripts were filtered, and count data were normalized using the method 

of trimmed mean of M-values (TMM). Differentially expressed genes (FDR < 0.1) were then identified utilizing 

the Bioconductor package EdgeR (version 2.7) 

44

. In the first set, paired information was incorporated into the 

model to account for pair-specific batch effects, while in the second set, paired information was omitted from 

the model. FPKM values were based on the gene model using GRCh38 RefSeq downloaded from UCSC table 

browser 

45

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

23 

 

Antibody Array 

 

Protein levels were quantified in passage three hESC- and iPSC-derived Schwann cells with the Human 

L Series Array 1000 Membrane Kit (RayBiotech, AAH-BLM-1000-2). following the manufacturer’s protocol. 

Briefly, cell lysates were biotinylated and incubated on membranes containing antibodies for 1000 human 

proteins. Immunoblot with HRP-conjugated Streptavidin was then performed and the membranes were imaged. 

Relative protein levels were quantified using the RayBio Analysis Tool and signal intensity of all samples were 

normalized to the negative control value for GM01582 iPSC-derived Schwann cells. Signal intensity for each 

protein was averaged and compared between hESC- and hiPSC-derived Schwann cells (n=1 per stem cell line, 

n=3 per stem cell type) and compared by multiple unpaired t-tests (without and with Welch correction for 

unequal variance) with the false discovery rate approach two-stage step-up method of Benjamini, Kreiger and 

Yekutieli method in Prism 9 (desired FDR = 1%, significant p<0.05). 

 

Literature Search for Schwann cell Function   

A PubMed literature search was performed to investigate links to Schwann cell/myelin function on the 

following: (1) 142 differentially expressed genes identified by RNA sequencing, (2) 20 significant canonical 

pathways identified by Ingenuity Pathway Analysis, (3) 18 most divergently expressed genes identified by 

antibody array and (4) four genes nearest to statistical significance identified by antibody array. The gene and 

the term “Schwann cell,” “myelin” or “oligodendrocyte” were searched in PubMed. A concrete link to Schwann 

cell function is defined by a research publication demonstrating a functional role for the gene in Schwann cells 

whereas a potential link to Schwann cell function is defined by a research publication demonstrating a 

functional role for the gene in oligodendrocytes or expression in Schwann cells without functional data. 

Percentages were calculated based on the number of concrete and potential links divided by the total number of 

genes assessed. 

 

Schwann Cell Transplantation 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

24 

 

Three-month-old male NOD SCID mice were used for the established chronic denervation and 

regeneration animal model 

34

. This involved transecting the tibial nerve just distal to the sciatic trifurcation, 

ligating both the proximal and distal stumps, and suturing distal stump to nearby muscles with 10-0 Sterile 

Micro Sutures (AROSurgical Instruments Corporation, T05A10N10-13). The contralateral side was kept as an 

uninjured control. Passage three hESC- and iPSC-derived Schwann cells were trypsinized (0.05% trypsin-

EDTA) and prepared at a concentration of 40,000 cells/μl in PBS. Heat killed cells were also prepared 

by boiling at 100° C for 10 minutes, cooling on ice and boiling again at 100° C for 10 minutes. Four months 

post-denervation (seven-month-old mice), the distal tibial nerve was transplanted with 2.5μl alive or heat killed 

hESC- or iPSC-derived Schwann cells using a Hamilton syringe (model 75 RN syringe, Hamilton Company, 

7634-01) and repaired with freshly transected proximal common peroneal nerve using 10-0 Sterile Micro 

Sutures. The syringe was washed with PBS between cell transplantations. Three months post-repair (10-month-

old mice), regeneration was assessed by electrophysiological, histological and behavioral assays. 

 

Nerve Electrophysiology 

 

Motor

evoked responses were evaluated using an established protocol 

46

. Briefly, under isoflurane 

anesthesia (flow rate 2 L/min), compound motor action potential (CMAP) in the distal foot muscles was 

recorded from the injured and contralateral sciatic notch of each mouse upon stimulation with PowerLab 

(ADInstruments) and subdermal needle electrodes (Natus Medical Store, 019-475900). Amplitude (peak to peak 

from the strongest recorded response) and latency (delay from stimulation to response onset) were quantified 

for each animal using Scope 4 and LabChart Reader (ADInstruments). 

 

Nerve Morphometry 

 

Immediately following electrophysiological examination, animals were sacrificed by cervical dislocation 

and 2mm of t

ibial nerve was harvested 5mm distal to the suture site.

 Nerve samples were fixed and processed 

for light microscopy by preparing 0.5μm sections and staining them with 1% toluidine blue (Electron 

Microscopy Sciences, 22050) 

47

. Tiled images of the entire nerve cross section were acquired on a Zeiss 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

25 

Axiophot microscope with a 60x objective. The number and density of myelinated axons (healthy axons 

surrounded by a myelin sheath) were evaluated from four randomly placed squares of equal area in the tibial 

branch of the sciatic nerve with ImageJ 

48,49

. Nerve electrophysiology and morphometry results were averaged 

and compared between alive transplanted hESC- and iPSC-derived Schwann cells (n=2-4/stem cell line, n=8-12 

total) and between heat killed transplanted hESC- and iPSC-derived Schwann cells (n=5-3 total) by unpaired t-

test. Transplanted hESC- and iPSC-derived Schwann cell results were also pooled and compared between alive 

and heat killed cells by unpaired t-test with Welch correction for unequal variance (significant p<0.05, Prism 9). 

 

Skilled Walking Behavior 

 

Behavioral recovery was evaluated with a ladder beam walking task by training the mice at least three 

times per week for two subsequent weeks and performing the test and analysis using an established protocol 

35

Results were averaged and compared between transplanted H9 hESC-derived Schwann cells and GM01582 

iPSC-derived Schwann cells (n=4 each) by unpaired t-test (significant p<0.05, Prism 9). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 

All statistical analyses were performed using Prism 9 which included the following tests: F-test for equal 

variance, unpaired t-test (without and with Welch correction for unequal variance), multiple unpaired t-tests 

with the false discovery rate approach two-stage step-up method of Benjamini, Kreiger and Yekutieli method 

(without and with Welch correction for unequal variance) and one-way ANOVA with Tukey’s post-hoc. The 

statistical test used, exact n, definition of what n represents and the definition of center and dispersion for each 

analysis is located in the figure legends. Randomization was performed for the mouse transplantation studies by 

randomly selecting mice for each condition from multiple litters. Sample size estimations were based on 

previous experience with RNA sequencing and standard group sizes for rodent experiments. No data points 

from any assay were excluded from this study. 

 

 

 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

26 

Excel-format Table Titles and Legends 

 

Table S1. Differential expression analysis for all genes identified by RNA sequencing set one, Related to 

Figure 2 

 

Table S2. Differential expression analysis for significant genes identified by RNA sequencing set one, 

Related to Figure 2 

 

Table S3. Significant canonical pathways identified by Ingenuity Pathway Analysis of the significant 

differentially expressed genes from RNA sequencing set one, Related to Figure 2 

 

Table S6. FPKM values for RNA sequencing sets one and two, Related to Figure 2 

 

Table S7.

 

Multiple unpaired t-test analysis of antibody array data, Related to Figure 3 

 

Table S8.

 

Multiple unpaired t-test with Welch correction analysis of antibody array data, Related to 

Figure 3 

 

 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

27 

References 

 
1. 

Jennings, M.J., Lochmuller, A., Atalaia, A., and Horvath, R. (2020). Targeted Therapies for Hereditary 

Peripheral Neuropathies: Systematic Review and Steps Towards a 'treatabolome'. J Neuromuscul Dis. 

10.3233/JND-200546. 

2. 

Bilic, J., and Izpisua Belmonte, J.C. (2012). Concise review: Induced pluripotent stem cells versus 

embryonic stem cells: close enough or yet too far apart? Stem Cells 

30

, 33-41. 10.1002/stem.700. 

3. 

Puri, M.C., and Nagy, A. (2012). Concise review: Embryonic stem cells versus induced pluripotent stem 

cells: the game is on. Stem Cells 

30

, 10-14. 10.1002/stem.788. 

4. 

Marei, H.E., Althani, A., Lashen, S., Cenciarelli, C., and Hasan, A. (2017). Genetically unmatched 

human iPSC and ESC exhibit equivalent gene expression and neuronal differentiation potential. Sci Rep 

7

, 17504. 10.1038/s41598-017-17882-1. 

5. 

Mukherjee-Clavin, B., Mi, R., Kern, B., Choi, I.Y., Lim, H., Oh, Y., Lannon, B., Kim, K.J., Bell, S., 

Hur, J.K., et al. (2019). Comparison of three congruent patient-specific cell types for the modelling of a 

human genetic Schwann-cell disorder. Nat Biomed Eng 

3

, 571-582. 10.1038/s41551-019-0381-8. 

6. 

Gu, Y., Wu, Y., Su, W., Xing, L., Shen, Y., He, X., Li, L., Yuan, Y., Tang, X., and Chen, G. (2018). 

17beta-Estradiol Enhances Schwann Cell Differentiation via the ERbeta-ERK1/2 Signaling Pathway and 

Promotes Remyelination in Injured Sciatic Nerves. Front Pharmacol 

9

, 1026. 10.3389/fphar.2018.01026. 

7. 

Griggs, R.B., Yermakov, L.M., Drouet, D.E., Nguyen, D.V.M., and Susuki, K. (2018). Methylglyoxal 

Disrupts Paranodal Axoglial Junctions via Calpain Activation. ASN Neuro 

10

, 1759091418766175. 

10.1177/1759091418766175. 

8. 

Lee, M.M., Badache, A., and DeVries, G.H. (1999). Phosphorylation of CREB in axon-induced 

Schwann cell proliferation. J Neurosci Res 

55

, 702-712. 10.1002/(SICI)1097-

4547(19990315)55:6<702::AID-JNR5>3.0.CO;2-N. 

9. 

Chang, H.M., Liu, C.H., Hsu, W.M., Chen, L.Y., Wang, H.P., Wu, T.H., Chen, K.Y., Ho, W.H., and 

Liao, W.C. (2014). Proliferative effects of melatonin on Schwann cells: implication for nerve 

regeneration following peripheral nerve injury. J Pineal Res 

56

, 322-332. 10.1111/jpi.12125. 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

28 

10. 

Pan, B., Jing, L., Cao, M., Hu, Y., Gao, X., Bu, X., Li, Z., Feng, H., and Guo, K. (2021). Melatonin 

promotes Schwann cell proliferation and migration via the shh signalling pathway after peripheral nerve 

injury. Eur J Neurosci 

53

, 720-731. 10.1111/ejn.14998. 

11. 

Latasa, M.J., Jimenez-Lara, A.M., and Cosgaya, J.M. (2016). Retinoic acid regulates Schwann cell 

migration via NEDD9 induction by transcriptional and post-translational mechanisms. Biochim Biophys 

Acta 

1863

, 1510-1518. 10.1016/j.bbamcr.2016.04.009. 

12. 

Yu, F., Weng, J., Yuan, Y.S., Kou, Y.H., Han, N., Jiang, B.G., and Zhang, P.X. (2018). Wnt5a Affects 

Schwann Cell Proliferation and Regeneration via Wnt/c-Jun and PTEN Signaling Pathway. Chin Med J 

(Engl) 

131

, 2623-2625. 10.4103/0366-6999.244116. 

13. 

Bihler, K., Kress, E., Esser, S., Nyamoya, S., Tauber, S.C., Clarner, T., Stope, M.B., Pufe, T., and 

Brandenburg, L.O. (2017). Formyl Peptide Receptor 1-Mediated Glial Cell Activation in a Mouse 

Model of Cuprizone-Induced Demyelination. J Mol Neurosci 

62

, 232-243. 10.1007/s12031-017-0924-y. 

14. 

Sung, H.Y., Chen, W.Y., Huang, H.T., Wang, C.Y., Chang, S.B., and Tzeng, S.F. (2019). Down-

regulation of interleukin-33 expression in oligodendrocyte precursor cells impairs oligodendrocyte 

lineage progression. J Neurochem 

150

, 691-708. 10.1111/jnc.14788. 

15. 

Sbai, O., Devi, T.S., Melone, M.A., Feron, F., Khrestchatisky, M., Singh, L.P., and Perrone, L. (2010). 

RAGE-TXNIP axis is required for S100B-promoted Schwann cell migration, fibronectin expression and 

cytokine secretion. J Cell Sci 

123

, 4332-4339. 10.1242/jcs.074674. 

16. 

Sonnenberg-Riethmacher, E., Miehe, M., and Riethmacher, D. (2015). Promotion of periostin 

expression contributes to the migration of Schwann cells. J Cell Sci 

128

, 3345-3355. 

10.1242/jcs.174177. 

17. 

Gisbert Roca, F., Andre, F.M., Mas Estelles, J., Monleon Pradas, M., Mir, L.M., and Martinez-Ramos, 

C. (2021). BDNF-Gene Transfected Schwann Cell-Assisted Axonal Extension and Sprouting on New 

PLA-PPy Microfiber Substrates. Macromol Biosci, e2000391. 10.1002/mabi.202000391. 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

29 

18. 

Yi, S., Yuan, Y., Chen, Q., Wang, X., Gong, L., Liu, J., Gu, X., and Li, S. (2016). Regulation of 

Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after 

peripheral nerve injury. Sci Rep 

6

, 29121. 10.1038/srep29121. 

19. 

Lin, G., Zhang, H., Sun, F., Lu, Z., Reed-Maldonado, A., Lee, Y.C., Wang, G., Banie, L., and Lue, T.F. 

(2016). Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT 

pathway in Schwann cells. Transl Androl Urol 

5

, 167-175. 10.21037/tau.2016.02.03. 

20. 

Thomas, P.D., Ebert, D., Muruganujan, A., Mushayahama, T., Albou, L.P., and Mi, H. (2022). 

PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci 

31

, 8-22. 

10.1002/pro.4218. 

21. 

Gene Ontology, C., Aleksander, S.A., Balhoff, J., Carbon, S., Cherry, J.M., Drabkin, H.J., Ebert, D., 

Feuermann, M., Gaudet, P., Harris, N.L., et al. (2023). The Gene Ontology knowledgebase in 2023. 

Genetics 

224

. 10.1093/genetics/iyad031. 

22. 

Ashburner, M., and Lewis, S. (2002). On ontologies for biologists: the Gene Ontology--untangling the 

web. Novartis Found Symp 

247

, 66-80; discussion 80-63, 84-90, 244-252. 

23. 

Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression Omnibus: NCBI gene expression 

and hybridization array data repository. Nucleic Acids Res 

30

, 207-210. 10.1093/nar/30.1.207. 

24. 

Xu, J., Zhang, B., Cai, J., Peng, Q., Hu, J., Askar, P., Shangguan, J., Su, W., Zhu, C., Sun, H., et al. 

(2023). The transcription factor Stat-1 is essential for Schwann cell differentiation, myelination and 

myelin sheath regeneration. Mol Med 

29

, 79. 10.1186/s10020-023-00667-w. 

25. 

Brosius Lutz, A., Lucas, T.A., Carson, G.A., Caneda, C., Zhou, L., Barres, B.A., Buckwalter, M.S., and 

Sloan, S.A. (2022). An RNA-sequencing transcriptome of the rodent Schwann cell response to 

peripheral nerve injury. J Neuroinflammation 

19

, 105. 10.1186/s12974-022-02462-6. 

26. 

Catignas, K.K., Frick, L.R., Pellegatta, M., Hurley, E., Kolb, Z., Addabbo, K., McCarty, J.H., Hynes, 

R.O., van der Flier, A., Poitelon, Y., et al. (2021). alphaV integrins in Schwann cells promote 

attachment to axons, but are dispensable in vivo. Glia 

69

, 91-108. 10.1002/glia.23886. 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

30 

27. 

Akassoglou, K., Yu, W.M., Akpinar, P., and Strickland, S. (2002). Fibrin inhibits peripheral nerve 

remyelination by regulating Schwann cell differentiation. Neuron 

33

, 861-875. 10.1016/s0896-

6273(02)00617-7. 

28. 

Torres-Mejia, E., Trumbach, D., Kleeberger, C., Dornseifer, U., Orschmann, T., Backer, T., Brenke, 

J.K., Hadian, K., Wurst, W., Lopez-Schier, H., and Desbordes, S.C. (2020). Sox2 controls Schwann cell 

self-organization through fibronectin fibrillogenesis. Sci Rep 

10

, 1984. 10.1038/s41598-019-56877-y. 

29. 

Chen, B., Hu, R., Min, Q., Li, Y., Parkinson, D.B., and Dun, X.P. (2020). FGF5 Regulates Schwann 

Cell Migration and Adhesion. Front Cell Neurosci 

14

, 237. 10.3389/fncel.2020.00237. 

30. 

Gu, Y., Xue, C., Zhu, J., Sun, H., Ding, F., Cao, Z., and Gu, X. (2014). Basic fibroblast growth factor 

(bFGF) facilitates differentiation of adult dorsal root ganglia-derived neural stem cells toward Schwann 

cells by binding to FGFR-1 through MAPK/ERK activation. J Mol Neurosci 

52

, 538-551. 

10.1007/s12031-013-0109-2. 

31. 

Fei, X.W., Pan, C.J., He, Y.L., Fang, Y.J., Zhuang, J.L., and Mei, Y.A. (2011). Brain natriuretic peptide 

modulates the delayed rectifier outward K(+) current and promotes the proliferation of mouse Schwann 

cells. J Cell Physiol 

226

, 440-449. 10.1002/jcp.22352. 

32. 

Hyung, S., Im, S.K., Lee, B.Y., Shin, J., Park, J.C., Lee, C., Suh, J.F., and Hur, E.M. (2019). 

Dedifferentiated Schwann cells secrete progranulin that enhances the survival and axon growth of motor 

neurons. Glia 

67

, 360-375. 10.1002/glia.23547. 

33. 

Nishio, Y., Nishihira, J., Ishibashi, T., Kato, H., and Minami, A. (2002). Role of macrophage migration 

inhibitory factor (MIF) in peripheral nerve regeneration: anti-MIF antibody induces delay of nerve 

regeneration and the apoptosis of Schwann cells. Mol Med 

8

, 509-520. 

34. 

Fu, S.Y., and Gordon, T. (1995). Contributing factors to poor functional recovery after delayed nerve 

repair: prolonged denervation. J Neurosci 

15

, 3886-3895. 10.1523/JNEUROSCI.15-05-03886.1995. 

35. 

Cummings, B.J., Engesser-Cesar, C., Cadena, G., and Anderson, A.J. (2007). Adaptation of a ladder 

beam walking task to assess locomotor recovery in mice following spinal cord injury. Behav Brain Res 

177

, 232-241. 10.1016/j.bbr.2006.11.042. 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

31 

36. 

Hopf, A., Schaefer, D.J., Kalbermatten, D.F., Guzman, R., and Madduri, S. (2020). Schwann Cell-Like 

Cells: Origin and Usability for Repair and Regeneration of the Peripheral and Central Nervous System. 

Cells 

9

. 10.3390/cells9091990. 

37. 

Horner, S.J., Couturier, N., Gueiber, D.C., Hafner, M., and Rudolf, R. (2022). Development and In Vitro 

Differentiation of Schwann Cells. Cells 

11

. 10.3390/cells11233753. 

38. 

Choi, J., Lee, S., Mallard, W., Clement, K., Tagliazucchi, G.M., Lim, H., Choi, I.Y., Ferrari, F., 

Tsankov, A.M., Pop, R., et al. (2015). A comparison of genetically matched cell lines reveals the 

equivalence of human iPSCs and ESCs. Nat Biotechnol 

33

, 1173-1181. 10.1038/nbt.3388. 

39. 

Wang, Y., Zhao, Z., Ren, Z., Zhao, B., Zhang, L., Chen, J., Xu, W., Lu, S., Zhao, Q., and Peng, J. 

(2012). Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral 

nerve regeneration. Neurosci Lett 

514

, 96-101. 10.1016/j.neulet.2012.02.066. 

40. 

Yamamoto, T., Osako, Y., Ito, M., Murakami, M., Hayashi, Y., Horibe, H., Iohara, K., Takeuchi, N., 

Okui, N., Hirata, H., et al. (2016). Trophic Effects of Dental Pulp Stem Cells on Schwann Cells in 

Peripheral Nerve Regeneration. Cell Transplant 

25

, 183-193. 10.3727/096368915X688074. 

41. 

Van Lent, J., Vendredy, L., Adriaenssens, E., Da Silva Authier, T., Asselbergh, B., Kaji, M., 

Weckhuysen, S., Van Den Bosch, L., Baets, J., and Timmerman, V. (2023). Downregulation of PMP22 

ameliorates myelin defects in iPSC-derived human organoid cultures of CMT1A. Brain 

146

, 2885-2896. 

10.1093/brain/awac475. 

42. 

Putri, G.H., Anders, S., Pyl, P.T., Pimanda, J.E., and Zanini, F. (2022). Analysing high-throughput 

sequencing data in Python with HTSeq 2.0. Bioinformatics 

38

, 2943-2945. 

10.1093/bioinformatics/btac166. 

43. 

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and 

Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 

29

, 15-21. 

10.1093/bioinformatics/bts635. 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

 

32 

44. 

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics 

26

, 139-140. 

10.1093/bioinformatics/btp616. 

45. 

Karolchik, D., Hinrichs, A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Haussler, D., and Kent, W.J. 

(2004). The UCSC Table Browser data retrieval tool. Nucleic Acids Res 

32

, D493-496. 

10.1093/nar/gkh103. 

46. 

Heine, W., Conant, K., Griffin, J.W., and Hoke, A. (2004). Transplanted neural stem cells promote 

axonal regeneration through chronically denervated peripheral nerves. Exp Neurol 

189

, 231-240. 

10.1016/j.expneurol.2004.06.014. 

47. 

Scheib, J.L., and Hoke, A. (2016). An attenuated immune response by Schwann cells and macrophages 

inhibits nerve regeneration in aged rats. Neurobiol Aging 

45

, 1-9. 

10.1016/j.neurobiolaging.2016.05.004. 

48. 

Moss, K.R., Johnson, A.E., Bopp, T.S., Yu, A.T., Perry, K., Chung, T., and Hoke, A. (2022). SARM1 

knockout does not rescue neuromuscular phenotypes in a Charcot-Marie-Tooth disease Type 1A mouse 

model. J Peripher Nerv Syst 

27

, 58-66. 10.1111/jns.12483. 

49. 

Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image 

analysis. Nat Methods 

9

, 671-675. 10.1038/nmeth.2089. 

 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

Journal Pre-proof

PIIS2589004224010770-html.html
background image

Journal Pre-proof

PIIS2589004224010770-html.html
background image

Journal Pre-proof

PIIS2589004224010770-html.html
background image

Journal Pre-proof

PIIS2589004224010770-html.html
background image

Highlights 
 

 

RNA sequencing and antibody array data from hESC- and hiPSC-derived Schwann cells 

 

hESC- and hiPSC-derived Schwann cells exhibit minimal transcriptome differences 

 

No proteome differences by antibody array in hESC- and hiPSC-derived Schwann cells 

 

hESC- and hiPSC-derived Schwann cells equally promote regeneration 

in vivo 

 
 
 

 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

KEY RESOURCES TABLE

 

REAGENT or 
RESOURCE 

SOURCE 

IDENTIFIER 

Antibodies 

Human Integrin 
alpha 4/CD49d 
PE-conjugated 
Antibody 

R&D Systems 

Cat# FAB1354P, RRID:AB_2296441 

Normal Goat 
Serum 

Jackson 
ImmunoResearch 
Laboratories, Inc. 

Cat# 005-000-121, RRID:AB_2336990 

Anti-S100B 
antibody produced 
in rabbit 

Sigma-Aldrich 

Cat# HPA015768, RRID:AB_1856538 

Goat anti-Rabbit 
IgG (H+L) Highly 
Cross-Adsorbed 
Secondary 
Antibody, Alexa 
Fluor™ 568 

Thermo Fisher 
Scientific 

Cat# A11036, RRID: 
AB_10563566 

Chemicals, Peptides, and Recombinant Proteins 

0.1% Gelatin in 
Water 

StemCell 
Technologies 

Cat# 07903 

DMEM, high 
glucose 

Thermo Fisher 
Scientific 

Cat# 11965092 

Fetal Bovine 
Serum, qualified, 
United States 

Thermo Fisher 
Scientific 

Cat# 26140095 

DMEM/F-12, 
HEPES 

Thermo Fisher 
Scientific 

Cat# 11330032 

KnockOut™ 
Serum 
Replacement 

Thermo Fisher 
Scientific 

Cat# 10828028 

MEM Non-
Essential Amino 
Acids Solution 
(100X) 

Thermo Fisher 
Scientific 

Cat# 11140050 

L-Glutamine (200 
mM) 

Thermo Fisher 
Scientific 

Cat# 25030081 

2-Mercaptoethanol  Thermo Fisher 

Scientific 

Cat# 21985023 

Human FGF-basic 
(FGF-2/bFGF) (aa 
1-155) 
Recombinant 
Protein 

Thermo Fisher 
Scientific 

Cat# PHG0264 

DPBS, no calcium, 
no magnesium 

Thermo Fisher 
Scientific 

Cat# 14190144 

Dispase (5 U/mL)  StemCell 

Technologies 

Cat# 07913 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

Matrigel® hESC-
Qualified Matrix, 
LDEV-free 

Corning Life 
Sciences 

Cat# 354277 

Accutase® 

Innovative Cell 
Technologies, 
Inc. 

Cat# AT104 

Y-27632 

Cell Signaling 
Technology 

Cat# 13624 

KnockOut™ 
DMEM 

Thermo Fisher 
Scientific 

Cat# 10829018 

Neurobasal™ 
Medium 

Thermo Fisher 
Scientific 

Cat# 21103049 

B-

27™ 

Supplement (50X), 
serum free 

Thermo Fisher 
Scientific 

Cat# 17504044 

N-2 Supplement 
(100X) 

Thermo Fisher 
Scientific 

Cat# 17502048 

SB-431542 

Tocris Bioscience Cat# 1614 

LDN-193189 

Tocris Bioscience Cat# 6053 

CHIR 99021 

Tocris Bioscience Cat# 4423 

DAPT 

Tocris Bioscience Cat# 2634 

dibutyrl cyclic AMP Sigma-Aldrich 

Cat# D0627 

L-ascorbic acid 

BioGems 
International, Inc. 

Cat# 5088177 

Poly-D-lysine 
hydrobromide 

Sigma-Aldrich 

Cat# P7280 

PBS, pH 7.4 

Thermo Fisher 
Scientific 

10010023 

ReLeSR™ 

StemCell 
Technologies 

Cat# 100-0483 

Deoxyribonuclease 
I from bovine 
pancreas 

Sigma-Aldrich 

Cat# DN25 

Schwann Cell 
Medium 

ScienCell 
Research 
Laboratories 

Cat# 1701 

Trypsin-EDTA 
(0.05%), phenol 
red 

Thermo Fisher 
Scientific 

Cat# 25300054 

Paraformaldehyde 
32% Aqueous 
Solution EM Grade 

Electron 
Microscopy 
Sciences 

Cat# 15714 

Triton

 X-100 

Sigma-Aldrich 

Cat# T9284 

Alexa Fluor™ 488 
Phalloidin 

Thermo Fisher 
Scientific 

Cat# A12379 

ProLong™ Gold 
Antifade Mountant 
with DNA Stain 
DAPI 

Thermo Fisher 
Scientifc 

Cat# P36931 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

TRIzol™ Reagent  Thermo Fisher 

Scientific 

Cat# 15596026 

Toluidine Blue 0, 
Certified, C.N. 
#DcU-10 

Electron 
Microscopy 
Sciences 

Cat #22050 

Critical Commercial Assays 

RNeasy Mini Kit 

Qiagen 

Cat# 74104 

Human L Series 
Array 1000 
Membrane Kit 

RayBiotech 

Cat# AAH-BLM-1000-2 

Deposited Data 

RNAseq Datasets  Gene Expression 

Omnibus (GEO) 

Accession Number: GSE208708 

Antibody Array 
Blots 

Mendeley Data 

DOI: 10.17632/k85ygcx787.2 

Experimental Models: Cell Lines 

H1 Human 
Embryonic Stem 
Cells 

WiCell Research 
Institute 

Cat# WA01, RRID:CVCL_9771 

H7 Human 
Embryonic Stem 
Cells 

WiCell Research 
Institute 

Cat# WA07, RRID:CVCL_9772 

H9 Human 
Embryonic Stem 
Cells 

WiCell Research 
Institute 

Cat# WA09, RRID:CVCL_9773 

GM01582 
Fibroblasts 

Coriell Institute 
for Medical 
Research 

Discontinued Product, RRID:CVCL_7323 

GM02623 
Fibroblasts 

Coriell Institute 
for Medical 
Research 

Cat# GM02623, RRID:CVCL_9W88 

GM08398 
Fibroblasts 

Coriell Institute 
for Medical 
Research 

Cat# GM08398, RRID:CVCL_A4DH 

CF6-Neo Mouse 
Embryonic 
Fibroblasts, MitC-
treated 

Thermo Fisher 
Scientific 

Cat# A34964 

Experimental Models: Organisms/Strains 

Mouse: NOD 
SCID: NOD.Cg-

Prkdc

scid

/J 

The Jackson 
Laboratory 

Cat# 001303, RRID:IMSR_JAX:001303 
  

Software and Algorithms 

HTSeq (version 
2.0): High-
throughput 
sequence analysis 
in Python 

42

 

Author: Fabio 
Zanini, Simon 
Anders, Givanna 
Putri and 
contributors 

https://htseq.readthedocs.io/en/latest/ 

STAR spliced read 
aligner (version 

Author: Alex 
Dobin 

https://github.com/alexdobin/STAR 

Journal Pre-proof

PIIS2589004224010770-html.html
background image

2.4.0) 

43

 

Bioconductor 
package EdgeR 
(version 2.7) 

44

 

Author: Mark 
Robinson, Davis 
McCarthy and 
Gordon Smyth 

https://www.bioconductor.org/packages//2.7/bioc/html/edgeR.html 

UCSC Table 
Browser 

45

 

Developed by 
UCSC and 
members of the 
International 
Human Genome 
Project 

https://genome.ucsc.edu/cgi-bin/hgTables 

Graphpad Prism 8 
(version 9.1.2) 

GraphPad 
Software, LLC. 

https://www.graphpad.com/ 

Zen2 Blue Edition 
(version 2.0.0) 

Zeiss 

https://www.zeiss.com/microscopy/en/products/software/zeiss-
zen.html 

Imaris x64 
(version 9.2.1) 

Oxford 
Instruments, 
Bitplane 

https://imaris.oxinst.com/ 

Scope4 

ADInstruments 

https://www.adinstruments.com/support/scope 

LabChart8 Reader 
(version 8.1.18) 

ADInstruments 

https://www.adinstruments.com/products/labchart-reader 

ImageJ (version 
2.1.0) 

49

 

Developed by 
National 
Institutes of 
Health 

https://imagej.net/ 

Other 

Falcon® 40 µm 
Cell Strainer, Blue, 
Sterile 

Corning Life 
Sciences 

Cat# 352340 

10-0 Sterile Micro 
Sutures 

AROSurgical 
Instruments 
Corporation 

Cat# T05A10N10-13 

5 µL, Model 75 RN 
Syringe 

Hamilton 
Company 

Cat# 7634-01 

Ultra Disposable 
Stainless Steel 
Subdermal Needle 
Electrodes 

Natus Medical 
Store 

Cat# 019-475900 

 

Journal Pre-proof