background image

FGF2 promotes the expansion of parietal mesothelial progenitor pools and inhibits BMP4-

mediated smooth muscle cell differentiation 

  

Youngmin Hwang

1

, Yuko Shimamura

1

, Junichi Tanaka

1

, Akihiro Miura

1

, Anri Sawada

1

Hemanta  Sarmah

1

,  Dai  Shimizu

1

,  Yuri  Kondo

1

,  Zurab  Ninish

1

,  Kazuhiko  Yamada

2

Munemasa Mori

1

 

 

 

1

Columbia  Center  for  Human  Development  (CCHD),  Columbia  University  Irvine  Medical 

Center, New York, USA. 

 

10 

2

 Department of Surgery, Johns Hopkins University, Baltimore, MD, USA 

11 

 

12 

 

13 

Summary 

14 

 

Mesothelial cells, in the outermost layer of internal organs, are essential for both organ 

15 

development and homeostasis. Although the parietal mesothelial cell is the primary origin of 

16 

mesothelioma  that  may  highjack  developmental  signaling,  the  signaling  pathways  that 

17 

orchestrate developing parietal mesothelial progenitor cell (MPC) behaviors, such as MPC pool 

18 

expansion, maturation, and differentiation, are poorly understood. To address it, we established 

19 

a robust protocol for culturing WT1

+

 MPCs isolated from developing pig and mouse parietal 

20 

thorax. Quantitative qPCR and immunostaining analyses revealed that BMP4 facilitated MPC 

21 

differentiation  into  smooth  muscle  cells  (SMCs).  In  contrast,  FGF2  significantly  promoted 

22 

MPC  progenitor  pool  expansion  but  blocked  the  SMC  differentiation.  BMP4  and  FGF2 

23 

counterbalanced these effects, but FGF2 had the dominant impact in the long-term culture. A 

24 

Wnt  activator,  CHIR99021,  was  pivotal  in  MPC  maturation  to  CALB2

+

  mesothelial  cells, 

25 

while  BMP4  or  FGF2  was  limited.  Our  results  demonstrated  central  pathways  critical  for 

26 

mesothelial cell behaviors.   

27 

   

28 

 

To whom correspondence should be addressed: 

29 

 

30 

Munemasa Mori

, MD, Ph.D. 

31 

Assistant Professor of Medicine, 

32 

Columbia Center for Human Development (CCHD), 

33 

Pulmonary Allergy & Critical Care Medicine, Department of Medicine, 

34 

Columbia University Irving Medical Center 

35 

Email

mm4452@cumc.columbia.edu

 

36 

Tel: 212-305-1731 

37 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

 

38 

Key words 

39 

Parietal  mesothelial  cell  self-renewal,  differentiation,  maturation,  FGF2,  BMP4,  PDGF-BB, 

40 

Wnt

 

 

 

41 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

Introduction 

42 

The mesothelium, a distinctive cell type forming the pleural monolayer, envelopes 

43 

the outermost layers of the viscera and facilitates the growth of developing organs. Despite 

44 

the known fact that aberrant proliferation of adult mesothelial cells, often aggravated by 

45 

asbestos exposure, can lead to mesothelioma through the manipulation of developmental 

46 

pathways, the specific signaling processes that dictate progenitor pool expansion, embryonic 

47 

mesothelial progenitor cell (MPC) maturation, and their differentiation into smooth muscle 

48 

cells (SMC) remain poorly understood.  

49 

Anatomically, adult mature mesothelial cells of the parietal and visceral pleura 

50 

encase the inner layer of the thorax and the outer layer of the lungs, respectively. Mouse 

51 

lineage-tracing analyses showed that visceral mesothelial cells in developing lung pleura 

52 

migrate inward and differentiate into vascular smooth muscle cells

1

, parabronchial smooth 

53 

muscle cells

2

, and myofibroblast

3

, highlighting the multipotency of developmental MPCs.  

54 

During development, the MPC arises from the exact origin, lateral plate mesoderm

4

, while 

55 

mesothelioma tends to originate from parietal mesothelial cells

5

. Since carcinogenesis often 

56 

hijacks developmental programs

6

, studying parietal mesothelial development could 

57 

significantly advance mesothelioma diagnosis and treatment.  

58 

Mesothelioma, a rare and aggressive cancer often caused by carcinogens like 

59 

asbestos or tar, has a notably high mortality rate

7

. The prevalence is high in the countries such 

60 

as the United Kingdom, Australia, and New Zealand

8

. Various tumor markers were 

61 

identified, including Calretinin (CALB2), mesothelin (MSLN), type III collagen (COL3A1), 

62 

and secretory leukocyte peptidase inhibitor (SLP1)

9

. Despite the availability of treatments 

63 

such as surgical decertification and chemotherapy, most cases are diagnosed at advanced 

64 

stages, limiting effective intervention options

 10

. A better understanding of the behavior of 

65 

MPCs in the parietal pleura during development could develop the prognostic markers of 

66 

mesothelioma. 

67 

In mouse embryos, Wilms Tumor Protein 1 (WT1), a representative mesothelial cell 

68 

marker, is expressed on visceral and parietal mesothelial cells from the lung and the thoracic 

69 

cavity

1,11

WT1

 knockout mice showed hypoplastic lung phenotype

11,12

 and the defects of 

70 

human mesothelial cells by Congenital Diaphragmatic Hernia (CDH), also known to develop 

71 

lung hypoplasia

13

.  

72 

Previous in vitro studies have shown that Fibroblast growth factor 2 (FGF2) and 

73 

platelet-derived growth factor (PDGF) are required for the proliferation of adult mesothelial 

74 

cells

14

. Notably, high expression of FGF2 in mesothelioma correlated with poor prognosis

15

.  

75 

Bone morphogenic protein 4 (BMP4) is expressed in the human adult peritoneal 

76 

mesothelium and plays a pivotal role in mesothelial-to-mesenchyme transition (MMT), 

77 

attenuating the TGF-beta-mediated MMT phenotype

16

. BMP4 is expressed ventral to the 

78 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

distal lung bud mesenchyme and at the distal lung bud tips of the endoderm

17,18

, but the 

79 

association with the behavior of WT1

+

 MPC is unknown.  

80 

Additionally, Sonic hedgehog (SHH) and Retinoic acid (RA) are implicated in MPC 

81 

migration and epithelial morphology transformation, respectively

 19

82 

However, how these signaling pathways intertwine and distinctively regulate MPC 

83 

pool expansion, differentiation, and maturation during development has yet to be determined, 

84 

necessitating robust culture methods for detailed study.   

85 

This study successfully allowed us to establish the method to isolate and culture 

86 

embryonic parietal MPC from developing pig and mouse thorax. By culturing these cells with 

87 

a range of small molecules and growth factors, we aimed to elucidate the signaling pathways 

88 

crucial for mesothelial cell development.   

89 

     

90 

Results 

91 

 

92 

Establishment of Cell Culture Protocol for the Expansion of Developing Pig Mesothelial 

93 

Cells  

94 

The development of pig lungs undergoes embryonic, pseudo glandular, canalicular, 

95 

and alveolar stages around embryonic day 19 (E19), E25, 60, and E90, respectively

20,21

. The 

96 

developmental stage at which pig parietal mesothelial progenitor cells (MPCs) could be 

97 

efficiently harvested was unknown. We harvested the parietal MPCs from the E80 canalicular 

98 

stage thorax to have enough cell numbers.  

99 

To harvest a WT1

+

 developing MPC efficiently, we compared several methods 

100 

previously reported

22–25

, including collecting pleural fluid, pinching porcine thoracic walls 

101 

with tweezers, scaring it with scrapers, or trypsinizing the porcine thoracic wall. Among 

102 

those methods, trypsinization with a 0.05% trypsin inside the E80 thoracic walls showed the 

103 

highest yield of MPC collection (

Figure 1A

). Interestingly, 0.25% trypsin treatment to the 

104 

thorax did not expand the MPC (

Figure S1A, B

). Previous papers showed the requirement of 

105 

EGF for culturing EGF

23,25

. Contrary to expectations, MPC culture with EGF didn’t offer an 

106 

apparent effect on MPC colony expansion (

Figure S1C

). To expand MPC efficiently, we 

107 

coated the cell culture dish with extracellular matrix (ECM) molecules (type I collagen (Col 

108 

I) and hyaluronic acid (HA)), given their expression in adult mature mesothelial cells

26,27

. We 

109 

found that the isolated MPC showed the sustained expression of 

Col I

 expression and its 

110 

receptor, 

integrin beta 1

 (

ITGB1

), but a relatively low expression of HA receptor (

CD44

111 

(

Figure 1B

). Indeed, Col I coating significantly enhanced MPC expansion compared to HA 

112 

coating (HA) and an uncoated control (

Figure 1C, D

). Since the gelatin and Col1 share the 

113 

integrin-binding motif, RGD sequence

28

, we cultured the MPC on the gelatin-coated dish and 

114 

confirmed its efficacy in expanding MPCs

27 

(

Figure 1E

). Based on this, we performed all 

115 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

downstream analyses on the gelatin-coated dish. Additionally, we confirmed that mouse 

116 

MPC can be collected and expanded well after the trypsinization directly on the E17.5 mouse 

117 

canalicular ~ sacculation stage thorax, noting that 0.25% trypsin was more effective for 

118 

mouse MPCs than 0.05% (

Figure S1D-F

). These results underscore the robustness and 

119 

effectiveness of our trypsinization-based protocol for isolating parietal MPCs in 

120 

development.

     

121 

 

122 

FGF2 Promotes Expansion of Pig Mesothelial Progenitor Cells (MPCs)

 

123 

While the role of FGF2 and PDGF in adult mesothelial cell proliferation is known, 

124 

their impact during development is little known

14

. To confirm each molecule’s effect on 

125 

developing MPCs, we cultured MPC with FGF2 and PDGF-BB for 3 days (

Figure 2

). 

126 

PDGF-BB was chosen as the signaling molecule for the PDGF signaling pathway due to its 

127 

binding potential to all PDGF receptors

29

. We found that FGF2 and PDGF-BB treatment 

128 

increased total cell number as well as the WT1

+

 cell numbers compared to the basal condition 

129 

control (

Figure 2A-D

). Ki67 immunostaining confirmed that FGF2 and PDGF-BB 

130 

significantly increased proliferating cell numbers (

Figure 2A, B, E

). Notably, FGF2 and 

131 

PDGF-BB induced a more than four times increase in proliferating Ki67

WT1

+

 MPC 

132 

proportion compared with the control in the short-term culture (

Figure 2F

). In contrast, the 

133 

treatment with SU5402, a FGFR inhibitor, and CP 673451, a PDGFR inhibitor, significantly 

134 

decreased both total and WT1 cell numbers (

Figure 2C, D

) by inducing 30~40% of cell 

135 

death, labeled by Cleaved Caspase3 (CASP3) 1-day post-treatment (

Figure S2

). These 

136 

results suggested that the effect of endogenous FGF2 and PDGF activation cultured in the 

137 

basal medium impacts ~40% of MPC survival and that FGF2 and PDGF signaling may be 

138 

essential for WT1

MPC maintenance. To investigate the effect of FGF2 and PDGF on MPC 

139 

pool expansion in the long term, we cultured the MPCs with FGF2 or PDGF-BB for 14 days 

140 

and analyzed 

WT1

 mRNA expression by qPCR (

Figure 2G-I

). We found that FGF2 

141 

maintained 

WT1

 mRNA expression more than 5 times fold change compared to the control 

142 

during long-term culture (

Figure 2H

), while the effect of PDGF-BB pool expansion did not 

143 

significantly influence the 

WT1

 expression compared to the control over time (

Figure 2I

). 

144 

These results suggest that FGF2 efficiently expands the MPC pools, but the PDGF-BB effect 

145 

on the expansion is temporally and limited.  

146 

        

147 

BMP4 Drives Differentiation of MPCs into SMC  

148 

During the MPC control culture condition, WT1

-

α-SMA

+

 cells were observed (5.8

 

149 

±

 3.3 %) (

Figure 2B

). We speculated that WT1

MPCs could spontaneously differentiate 

150 

into smooth muscle cells (SMCs), given that mouse visceral lung mesothelial cells 

151 

differentiate into smooth muscle cells during mouse lung development

1,2

. To find which 

152 

signaling molecules induce MPC differentiation into SMC, we cultured MPC with various 

153 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

small molecules and inhibitors with different concentrations and screened 

α-SMA 

mRNA

 

154 

expression

 

by

 

qPCR analysis (

Figure S3A

). We discovered that the BMP4 and ascorbic acid 

155 

(AA) condition enhanced 

α-SMA

 mRNA expression compared to control among the tested 

156 

conditions. Since BMP4 more dramatically induced SMC differentiation than AA, we 

157 

focused on further analyses of BMP signaling. qPCR analyses found that BMP4 treatment 

158 

showed significantly higher 

α-SMA

 mRNA induction both in short-term and long-term 

159 

cultures, while BMP4 treatment had a transient effect on 

WT1

 mRNA increase only in the 

160 

short term but did not sustain its impact in the long term (

Figure 3B, C

). In contrast, 

161 

Dorsomorphin, a BMP4 inhibitor, significantly reduced 

α-SMA

 mRNA expression with no 

162 

significant change in 

WT1 

mRNA expression (

Figure 3B

). Since the kinetics of 

WT1

 and 

α-

163 

SMA 

mRNA by BMP4 treatment indicated the MPC differentiation into SMC, we 

164 

investigated the detailed cell fate change from MPC to SMC by immunostainings in short-

165 

term culture (

Figure 3A

). Consistent with the qPCR observations, immunostaining analysis 

166 

showed a significantly increased α-SMA

+

 cell proportion (Control: 7.8 ± 1.7 % vs. BMP4: 

167 

31.4 ± 1.4 %) and the number by BMP4 treatment (

Figure 3A, D-F

), while dorsomorphin 

168 

significantly reduced the α-SMA

+

 SMC proportion (6.7 ± 3.0 %). Unlike FGF2 and PDGF-

169 

BB (

Figure 2

), BMP4 treatment did not alter the total cell number, WT1

MCP numbers, or 

170 

WT1

proportion but significantly increased Ki67

+

 cells (

Figure 3F-H

) while inducing about 

171 

20% of CASP3

+

 cell death, which might be the cell selection step (

Figure S2

). Indeed, BMP4 

172 

selectively eliminates the WT1

Ki67

-

α-SMA

-

 unknown cell type while dorsomorphin 

173 

significantly increased it (

Figure 3D

). Intriguingly, we observed a significantly increased 

174 

proportion of WT1

+

α-SMA

+

 cells in WT1

+

 MPC (control: 9.9 

±

 1.9 % vs. BMP4 group: 46.4

 

175 

±

 6.4 %) by BMP4 treatment (

Figure 3I

), but proportion of WT1

-

α-SMA

+

 in SMC (control: 

176 

30.7 

±

 15.4 % vs. BMP4 group: 43.7

 

±

 8.6 %) (

Figure 3J

) was not significantly changed. 

177 

On the other hand, we did not observe any change in the proportion of WT1

+

α-SMA

+

 in α-

178 

SMA

+

 cells (

Figure 3K)

. These results indicate that BMP4 treatment primes the mesothelial 

179 

progenitor pools to co-express WT1 and α-SMA, facilitating MPC differentiation into SMCs. 

180 

Based on these results, including long-term culture, we concluded that the pivotal role of 

181 

BMP4 is to

 

induce parietal MPC differentiation into α-SMA

+

 SMC with losing WT1 

182 

expression.   

183 

  

184 

FGF2 and PDGF-BB Suppressed MPC Differentiation into SMCs  

185 

We observed MPC progenitor pool regulation by FGF2 and PDGF-BB (

Figure 2

186 

and differentiation into α-SMA

+

 SMC by BMP4 (

Figure 3

), but it was unclear whether FGF2 

187 

and PDGF-BB influence the SMC pools. To address this, we performed qPCR analyses. We 

188 

found that the decreased

 α-SMA

 

mRNA expression by the FGF2 or PDGF-BB over time 

189 

(

Figure 4A, B, S3

), and the further analysis of IF data showed that the proportion of α-SMA

+

 

190 

cells was significantly reduced by the FGF2 or PDGF-BB treatment (Control vs. FGF2 vs. 

191 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

PDGF-BB groups: 7.8 

±

 1.7 % vs. 2.5 

±

 0.5 % vs. 3.2

 

±

 0.4 %), while BMP4 significantly 

192 

induced α-SMA

+

 cells (31.4 

±

 1.4 %) (

Figure 4C

). In particular, PDGF-BB showed a 

193 

dramatic decrease of 

α-SMA

 mRNA than FGF2 (

Figure 4B

). While there were no significant 

194 

changes in the proportion of proliferating α-SMA

+

 cells, the proportion of WT1

+

α-SMA

+

 

195 

cells was significantly decreased by the FGF2 or PDGF treatment (Control vs. FGF2 vs. 

196 

PDGF-BB groups: 9.9 

±

 1.9 % vs. 3.8 

±

 0.9 % vs. 3.4

 

±

 1.3 %) (

Figure 4D, E

). These 

197 

results indicate that FGF2 and PDGF play a central role in MPC progenitor pool expansion 

198 

by inhibiting the induction of WT1

+

α-SMA

+

 primed cells, leading to α-SMA

+

 smooth muscle 

199 

cells (

Figure 4F

).   

200 

 

201 

Dominance of FGF2 Effect Over BMP Signaling in MPC Pool Regulation 

202 

Since we found FGF2 and PDGF suppressed BMP4-mediated MPC differentiation 

203 

into SMC (

Figure 2-4

), we cultured MPC with the combination of FGF2 and BMP4 (FGF2 + 

204 

BMP4) or PDGF-BB and BMP4 (PDGF-BB + BMP4) to investigate the potential counter 

205 

effect. We found that MPC culture with FGF2 + BMP4 and PDGF-BB + BMP4 significantly 

206 

suppressed the BMP4-mediated MPC differentiation into SMC with lower 

α-SMA

 mRNA 

207 

expression than the BMP4 group (

Figure 5A)

. This mRNA expression trend was the same in 

208 

the long-term culture (

Figure 5B

). Although the short-term treatment with FGF2 + BMP4 

209 

and PDGF-BB + BMP4 showed a decrease in 

WT1

 mRNA expression (

Figure 5A

), the long-

210 

term effect with FGF2 + BMP4 exhibited an increase in the 

WT1

 mRNA expression 

211 

compared to controls (

Figure 5B

), consistent with the FGF2 effect (

Figure 2

). The long-term 

212 

effect of PDGF-BB + BMP4 did not impact the 

WT1

 mRNA expression. Interestingly, the 

213 

FGF2+BMP4 or PDGF-BB+BMP4 condition induced more cell proliferation with a higher 

214 

total cell number than the BMP4 group in the short term (

Figure 5C-G

). In contrast, FGF2 + 

215 

PDGF-BB and PDGF-BB + BMP4 conditions significantly increased WT1

+

 MPCs and 

216 

proliferating cell numbers than the control condition in the short-term but could not sustain 

217 

WT1

 mRNA expression in the long-term (

Figure 5A, E, F

). FGF2 + PDGF-BB and PDGF-

218 

BB + BMP4 conditions treatment significantly decreased α-SMA+ cells and showed no 

219 

increase of primed WT1

+

α-SMA

+

 cells in WT1

+

 cells (

Figure 5G, H

). As we expected, there 

220 

was no significant change in WT1

+

α-SMA

+

 cells in α-SMA

cells (

Figure 5I

). These results 

221 

suggest the critical role of FGF2 in maintaining the MPC pool and its self-renewal that 

222 

counteracts the BMP signaling effects on MPC differentiation into SMC. 

223 

   

224 

Wnt Signaling Facilitates MPC Maturation  

225 

During development, mesenchymal β-catenin signaling controls parabronchial 

226 

smooth muscle cell (PSMC) progenitors in the sub-mesothelial mesenchyme

2

. Wnt signaling 

227 

is involved in the outer mesothelial pool size of the zebrafish swimbladder during 

228 

development

28

. However, the molecular characterization of MPCs and their maturation 

229 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

during pig lung development have been little studied. To address this issue, we performed 

230 

immunostaining of WT1 and CALB2 in pig and mouse lung development (

Figure S4

). 

231 

Developing porcine pleural mesothelial cells expressed high levels of WT1 in the E26 early 

232 

pseudoglandular stage of porcine lungs, but the relative expression level in the peripheral 

233 

layer of the lungs was decreased in the later stage (

Figure S4A, B

). In contrast, CALB2 

234 

expression was not detected in the peripheral layer of the lungs in the E26 and E40 early 

235 

pseudoglandular stage but appeared in the canalicular stage and afterward (

Figure S4D, E

). 

236 

These results indicate that CALB2 is the marker for mesothelial cell maturation during 

237 

porcine lung development. We also confirmed that the WT1 expression pattern was also 

238 

similar during mouse lung development, supported by previous studies

1,19 

(Figure S4C)

239 

while CALB2 started to be expressed in the sub-peripheral layer from the E14.5 

240 

pseudoglandular stage in mouse lung development (

Figure S4F

).  

241 

To investigate the common MPC maturation markers across the species, we revisited 

242 

the deposit single-cell RNA-seq (scRNA-seq) database of developing human

30

 and mouse

31

 

243 

lung mesenchyme (

Figure S5

). We found that 

WT1

 was highly expressed in the early 

244 

pseudoglandular stage but decreased its expression in the late pseudoglandular and 

245 

canalicular stages of human and mouse-developing lungs. 

CALB2

, a mature mesothelial cell 

246 

marker, was slightly observed but not abundant in human lung development. During mouse 

247 

lung development, 

CALB2

 was observed in non-mesothelial cells. In contrast, mesothelin 

248 

(

MSLN

) expression was observed in the late pseudoglandular stage of developing human 

249 

lungs to the canalicular stage while around the E18 sacculation stage and afterward in the 

250 

mouse lungs. These results suggest that decreased expression of 

WT1

 and increased 

MSLN

 

251 

are the evolutionarily conserved markers for MPC maturation, but 

CALB2

 is a pig-specific 

252 

unique marker for MPC maturation. Based on these results, we examined pig MPC 

253 

maturation in an in vitro study using 

WT1

CALB2,

 and 

MSLN

254 

We performed qPCR to screen the most potent signaling molecules regulating pig 

255 

MPC maturation to CALB2

+

 and MSLN

mature mesothelial cells (

Figure S3B, C

)

Among 

256 

them, we found that most signaling molecules induced the upregulation of 

CALB2 

and

 MSLN

 

257 

mRNA. In particular, the GSK3β inhibitor that acts as a Wnt activator (CHIR) showed the 

258 

most dramatic increase in 

CALB2

 mRNA expression. Thus, we focused on analyzing Wnt 

259 

signaling using CHIR in the MPC maturation. Three days of short-term CHIR treatment 

260 

increased 

WT1

CALB2

, and 

MSLN

 mRNA expressions, while the long-term CHIR treatment 

261 

lost WT1

+

 MPC pools but relatively sustained 

CALB2 

expression (

Figure 6A

). Since high 

262 

WT1 

mRNA expression is the landmark for immature MPC pool expansion, these results 

263 

indicate that the MPC maturation by CHIR occurred as a long-term effect (

Figure 6A

). 

264 

Interestingly, we also found that long-term treatment with FGF2 or BMP4 significantly 

265 

increased 

MSLN

 mRNA expression compared to the control (

Figure 6B

). However, FGF2 

266 

did not increase the mRNA expression of 

MSLN

 and 

CALB2

 in a dose-dependent manner in 

267 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

short-term culture, while BMP4 induced 

CALB2

 mRNA expression in a dose-dependent 

268 

manner (

Figure S3C

). Furthermore, the

 CALB2

 mRNA upregulation by FGF2 or BMP4 was 

269 

transient and relatively limited in the long-term treatment compared to the CHIR treatment 

270 

(

Figure 6B

). Consistent with the qPCR results, the CALB2 immunostaining exhibited a 

271 

consistent trend with qPCR results, indicating the increased CALB2

+

 cells by CHIR 

272 

treatment (

Figure 6C, D

). As shown in the PDGF-BB effect, CHIR induced Ki67

+

 

273 

proliferative WT1

+

 cells and significantly increased total cell numbers compared to control 

274 

(

Figure S6A-C

), while no WT1

+

 cell number or proportional change and reduced α-SMA

+

 

275 

cell number (

Figure S6D, E

). These results indicate that Wnt signaling activation induces 

276 

MPC maturation into MSLN

CALB2

+

 cells, corresponding to the expression pattern of 

277 

CALB2 in porcine lung development.  

278 

  

279 

Discussion

 

280 

Previous studies showed the markers of adult mesothelial cells or in mesothelioma, 

281 

but it has been unclear how developing mesothelial progenitors shift the marker expressions 

282 

and their association with cellular behaviors. We established an MPC expansion protocol that 

283 

allows us to find the foundation of signaling pathways involved in MPC pool expansion, 

284 

differentiation, and maturation. Technically, we could not expand the cells from the E40 or 

285 

earlier time point’s thoracic wall in either method due to the low effectiveness of isolating 

286 

MPCs even using swine specimens larger than mice (data not shown). Harvesting MPC 

287 

exclusively from the lungs was also challenging because it contained various other cell types 

288 

after the culture (data not shown). Based on these technical limitations, we focused on the 

289 

MPC cellular analysis derived from the E80 thoracic walls. Of note, we also expand mouse 

290 

MPC, in this culture condition, from the thorax at E17.0 ~ E17.5 canalicular ~ sacculation 

291 

stage, corresponding to E80 pig developmental time points, indicating the robustness of our 

292 

culture protocol to harvest and expand MPC (

Figure S1

).       

293 

FGF signaling pathways have been classically known as critical mitogens for both 

294 

epithelium and mesenchyme

32–34

. Interestingly, mesothelial cells and mesothelioma have 

295 

been characterized as epithelial-like and mesenchymal-like features

35,36

. We found that FGF2 

296 

has the most potent effect on MPC self-renewal in the long-term culture among tested 

297 

conditions and inhibits BMP4-mediated SMC differentiation. Given that FGF2 high 

298 

expression in mesothelioma is one of the critical prognosis factors and carcinogenesis often 

299 

renders developmental program

37–39

, we speculate that targeting therapy for the FGF2 and its 

300 

downstream, such as Spry2

40

, Ras

41

, or Sos

42

, may be critical for controlling FGF2

high+

 

301 

mesothelioma expansion and metastasis.  

302 

We found BMP4 signaling was critical for inducing MPC differentiation into SMC 

303 

with an increase of α-SMA

cells,

 

including primed, transitioning WT1

+

α-SMA

+

 cells and 

304 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

differentiated WT1

-

α-SMA

+

 cells (

Figure 4

). The molecular mechanism of how BMP4 

305 

converts MPC to SMC needs to be determined in the future. Interestingly, our 

306 

immunostaining analyses revealed that proliferating Ki67

+

α-SMA

+

 cells were never observed 

307 

without tuning on WT1 (

Figure 4

). BMP4 initially induced WT1

+

Ki67

+

α-SMA

+

 transitioning 

308 

cells but later lost the 

WT1

 mRNA expression (

Figure 3B

), suggesting that the critical role of 

309 

BMP4 in MPC cell fate change to post-mitotic terminally differentiated SMC. Since retinoic 

310 

acid treatment for acute leukemia patients induces terminally differentiated cells and is an 

311 

effective therapy for those patients

43

, how BMP4 signaling activation would influence 

312 

mesothelioma would be an attractive question.  

313 

Parietal MPC and lung peripheral MPC showed distinct morphology and function

44

314 

Our study showed that potential CALB2 descendants of MPC appeared around the 

315 

neighboring WT1

+

 mesothelium (

Figure S4D, E

), supported by previous studies of mouse 

316 

lung development

45

. There are remaining exciting questions regarding MPC maturation: 

317 

about the role of CALB2 in porcine parietal MPC, its developmental distributions, how the 

318 

parietal and lung-peripheral MPC distinctively mature, and how these MPC pools 

319 

communicate during development. Interestingly, we did not observe CALB2

+

 cells on the 

320 

parietal mesothelium during mouse development (

Figure S4F

). We examined three different 

321 

antibodies against MSLN to investigate the maturation of MPC during development. 

322 

However, MSLN expression was not detected in developing lungs and thorax, as in the 

323 

previous study

19

, which is inconsistent with the scRNA-seq result (

Figure S5B

). This 

324 

indicates that protein expression may be regulated at post-translational levels or require 

325 

further technical advancements.    

326 

Interestingly, the WT1

MPC showed α-SMA expression, reminiscent of porcine 

327 

parietal mesothelial cells in the E26 early pseudoglandular stage (

Figure 1E, Figure S4A

), 

328 

while it is uncommon in peripheral lung MPC. In our culture model, we used MPC at the 

329 

canalicular ~ sacculation stage. Our results indicate that porcine parietal MPCs may be a 

330 

source of SMCs around the developing ribs.   

331 

We summarized MPC fate change by signaling molecules (

Figure 7

). Interestingly, 

332 

FGF2 promoted the expansion of both WT1

+

 MPC and WT1

-

α-SMA

pool compared to the 

333 

control (

Figure 2B

). The WT1

-

α-SMA

pool would involve CALB2

mature mesothelial 

334 

cells. However, BMP4 suppressed the WT1

-

α-SMA

pool expansion (

Figure 3D

), while 

335 

BMP4 also increased CALB2 expression in short-term culture (

Figure 6B, D

). This 

336 

discrepancy suggests the existence of WT1

-

α-SMA

CALB2

unknown

 

pool, which may have 

337 

a role in the MPC regulation (

Figure 7

). Further analysis using genetic lineage tracing or 

338 

single cell level bioinformatics analysis may reveal the lineage hierarchy, parietal MPC vs. 

339 

peripheral lung MPC vs. WT1

-

α-SMA

niche interactions, and association with 

340 

mesothelioma, which will lead to further understanding of mesothelial development and 

341 

pathogenesis.  

342 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

  

343 

Acknowledgments 

344 

We thank Zurab Ninish for his technical assistance. We sincerely appreciate scientific 

345 

input from Dr. Jianwen Que and Dr. Wellington Cardoso at the Columbia Center for Human 

346 

Development (CCHD) and the members of Cardoso’s lab and CCHD. We acknowledge the 

347 

support from the CCHD Medicine Microscopy Core (MMC)

 (NIH S10 OD032447-01)

. This 

348 

work was funded by NIH-NHLBI 1R01 HL148223-01, DoD PR190557, PR191133 to M. M.. 

349 

 

350 

Author contributions 

351 

Youngmin Hwang, Validation, Investigation, Visualization, Methodology, Writing – original 

352 

draft; Yuko Shimamura, Junichi Tanaka, Akihiro Miura, Anri Sawada, Hemanta Sarmah, Dai 

353 

Shimizu, Yuri Kondo, Investigation, Validation; Zurab Ninish, Kazuhiko Yamada, 

354 

Methodology; Munemasa Mori, Conceptualization, Data curation, Supervision, Funding 

355 

acquisition, Validation, Investigation, Methodology, Project administration, Writing – review 

356 

and editing.  

357 

 

358 

Declaration of interests   

359 

The authors declare no competing interests. 

360 

 

361 

 

 

362 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

References 

363 

1. 

Que, J., Wilm, B., Hasegawa, H., Wang, F., Bader, D., and Hogan, B.L.M. (2008). 

364 

Mesothelium contributes to vascular smooth muscle and mesenchyme during lung 

365 

development. Proc Natl Acad Sci U S A 

105

. 10.1073/pnas.0808649105. 

366 

2. 

De Langhe, S.P., Carraro, G., Tefft, D., Li, C., Xu, X., Chai, Y., Minoo, P., 

367 

Hajihosseini, M.K., Drouin, J., Kaartinen, V., et al. (2008). Formation and 

368 

differentiation of multiple mesenchymal lineages during lung development is regulated 

369 

by β-catenin signaling. PLoS One 

3

. 10.1371/journal.pone.0001516. 

370 

3. 

Choo, Y.Y., Sakai, T., Komatsu, S., Ikebe, R., Jeffers, A., Singh, K.P., Idell, S., 

371 

Tucker, T.A., and Ikebe, M. (2022). Calponin 1 contributes to myofibroblast 

372 

differentiation of human pleural mesothelial cells. Am J Physiol Lung Cell Mol 

373 

Physiol 

322

. 10.1152/AJPLUNG.00289.2021. 

374 

4. 

Obacz, J., Yung, H., Shamseddin, M., Linnane, E., Liu, X., Azad, A.A., Rassl, D.M., 

375 

Fairen-Jimenez, D., Rintoul, R.C., Nikolić, M.Z., et al. (2021). Biological basis for 

376 

novel mesothelioma therapies. Preprint, 10.1038/s41416-021-01462-2 

377 

10.1038/s41416-021-01462-2. 

378 

5. 

Boutin, C., Schlesser, M., Frenay, C., and Astoul, P. (1998). Malignant pleural 

379 

mesothelioma. European Respiratory Journal 

12

. 10.1183/09031936.98.12040972. 

380 

6. 

Manzo, G. (2019). Similarities between embryo development and cancer process 

381 

suggest new strategies for research and therapy of tumors: A new point of view. Front 

382 

Cell Dev Biol 

7

. 10.3389/fcell.2019.00020. 

383 

7. 

Rehrauer, H., Wu, L., Blum, W., Pecze, L., Henzi, T., Serre-Beinier, V., Aquino, C., 

384 

Vrugt, B., De Perrot, M., Schwaller, B., et al. (2018). How asbestos drives the tissue 

385 

towards tumors: YAP activation, macrophage and mesothelial precursor recruitment, 

386 

RNA editing, and somatic mutations. Oncogene 

37

. 10.1038/s41388-018-0153-z. 

387 

8. 

Huang, J., Chan, S.C., Pang, W.S., Chow, S.H., Lok, V., Zhang, L., Lin, X., Lucero-

388 

Prisno, D.E., Xu, W., Zheng, Z.J., et al. (2023). Global Incidence, Risk Factors, and 

389 

Temporal Trends of Mesothelioma: A Population-Based Study. Journal of Thoracic 

390 

Oncology 

18

. 10.1016/j.jtho.2023.01.095. 

391 

9. 

Gueugnon, F., Leclercq, S., Blanquart, C., Sagan, C., Cellerin, L., Padieu, M., 

392 

Perigaud, C., Scherpereel, A., and Gregoire, M. (2011). Identification of novel markers 

393 

for the diagnosis of malignant pleural mesothelioma. American Journal of Pathology 

394 

178

. 10.1016/j.ajpath.2010.12.014. 

395 

10. 

Ricciardi, S., Cardillo, G., Zirafa, C.C., Carleo, F., Facciolo, F., Fontanini, G., Mutti, 

396 

L., and Melfi, F. (2018). Surgery for malignant pleural mesothelioma: An international 

397 

guidelines review. Preprint, 10.21037/jtd.2017.10.16 10.21037/jtd.2017.10.16. 

398 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

11. 

Cano, E., Carmona, R., and Muñoz-Chápuli, R. (2013). Wt1-expressing progenitors 

399 

contribute to multiple tissues in the developing lung. Am J Physiol Lung Cell Mol 

400 

Physiol 

305

. 10.1152/ajplung.00424.2012. 

401 

12. 

Sontake, V., Kasam, R.K., Sinner, D., Korfhagen, T.R., Reddy, G.B., White, E.S., 

402 

Jegga, A.G., and Madala, S.K. (2018). Wilms’ tumor 1 drives fibroproliferation and 

403 

myofibroblast transformation in severe fibrotic lung disease. JCI Insight 

3

404 

10.1172/jci.insight.121252. 

405 

13. 

Gilbert, R.M., Schappell, L.E., and Gleghorn, J.P. (2021). Defective mesothelium and 

406 

limited physical space are drivers of dysregulated lung development in a genetic model 

407 

of congenital diaphragmatic hernia. Development (Cambridge) 

148

408 

10.1242/DEV.199460. 

409 

14. 

Mutsaers, S.E., McAnulty, R.J., Laurent, G.J., Versnel, M.A., Whitaker, D., and 

410 

Papadimitriou, J.M. (1997). Cytokine regulation of mesothelial cell proliferation in 

411 

vitro and in vivo. Eur J Cell Biol 

72

412 

15. 

Kumar-Singh, S., Weyler, J., Martin, M.J.H., Vermeulen, P.B., and Van Marck, E. 

413 

(1999). Angiogenic cytokines in mesothelioma: A study of VEGF, FGF-1 and -2, and 

414 

TGFβ expression. Journal of Pathology 

189

. 10.1002/(SICI)1096-

415 

9896(199909)189:1<72::AID-PATH401>3.0.CO;2-0. 

416 

16. 

Namvar, S., Woolf, A.S., Zeef, L.A.H., Wilm, T., Wilm, B., and Herrick, S.E. (2018). 

417 

Functional molecules in mesothelial-to-mesenchymal transition revealed by 

418 

transcriptome analyses. Journal of Pathology 

245

. 10.1002/path.5101. 

419 

17. 

Weaver, M., Yingling, J.M., Dunn, N.R., Bellusci, S., and Hogan, B.L. (1999). Bmp 

420 

signaling regulates proximal-distal differentiation of endoderm in mouse lung 

421 

development. Development 

126

, 4005–4015. 

422 

18. 

Weaver, M., Dunn, N.R., and Hogan, B.L. (2000). Bmp4 and Fgf10 play opposing 

423 

roles during lung bud morphogenesis. Development 

127

, 2695–2704. 

424 

19. 

Dixit, R., Ai, X., and Fine, A. (2013). Derivation of lung mesenchymal lineages from 

425 

the fetal mesothelium requires hedgehog signaling for mesothelial cell entry. 

426 

Development 

140

, 4398–4406. 10.1242/dev.098079. 

427 

20. 

Shimamura, Y., Tanaka, J., Kakiuchi, M., Sarmah, H., Miura, A., Hwang, Y., Sawada, 

428 

A., Ninish, Z., Yamada, K., Cai, J.J., et al. (2022). A developmental program that 

429 

regulates mammalian organ size offsets evolutionary distance. bioRxiv. 

430 

10.1101/2022.10.19.512107. 

431 

21. 

McGeady, T.A., Quinn, P.J., Fitzpatrick, E.S., Ryan, M.T., Kilroy, D., and Lonergan, 

432 

P. (2017). Veterinary Embryology. 

433 

22. 

Kienzle, A., Servais, A.B., Ysasi, A.B., Gibney, B.C., Valenzuela, C.D., Wagner, 

434 

W.L., Ackermann, M., and Mentzer, S.J. (2018). Free-floating mesothelial cells in 

435 

pleural fluid after lung surgery. Front Med (Lausanne) 

5

. 10.3389/fmed.2018.00089. 

436 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

23. 

Mierzejewski, M., Paplinska-Goryca, M., Korczynski, P., and Krenke, R. (2021). 

437 

Primary human mesothelial cell culture in the evaluation of the inflammatory response 

438 

to different sclerosing agents used for pleurodesis. Physiol Rep 

9

439 

10.14814/phy2.14846. 

440 

24. 

Kawai, N., Ouji, Y., Sakagami, M., Tojo, T., Sawabata, N., Yoshikawa, M., and 

441 

Taniguchi, S. (2019). Isolation and culture of pleural mesothelial cells. Exp Lung Res 

442 

45

. 10.1080/01902148.2018.1511002. 

443 

25. 

Pruett, N., Singh, A., Shankar, A., Schrump, D.S., and Hoang, C.D. (2020). Normal 

444 

mesothelial cell lines newly derived from human pleural biopsy explants. Am J 

445 

Physiol Lung Cell Mol Physiol 

319

. 10.1152/AJPLUNG.00141.2020. 

446 

26. 

Saed, G.M., Zhang, W., Chegini, N., Holmdahl, L., and Diamond, M.P. (1999). 

447 

Alteration of type I and III collagen expression in human peritoneal mesothelial cells 

448 

in response to hypoxia and transforming growth factor-β1. Wound Repair and 

449 

Regeneration 

7

. 10.1046/j.1524-475X.1999.00504.x. 

450 

27. 

Breborowicz, A., Korybalska, K., Grzybowski, A., Wieczorowska-Tobis, K., Martis, 

451 

L., and Oreopoulos, D.G. (1996). Synthesis of hyaluronic acid by human peritoneal 

452 

mesothelial cells: Effect of cytokines and dialysate. Peritoneal Dialysis International 

453 

16

. 10.1177/089686089601600410. 

454 

28. 

Davidenko, N., Schuster, C.F., Bax, D. V., Farndale, R.W., Hamaia, S., Best, S.M., 

455 

and Cameron, R.E. (2016). Evaluation of cell binding to collagen and gelatin: a study 

456 

of the effect of 2D and 3D architecture and surface chemistry. J Mater Sci Mater Med 

457 

27

. 10.1007/s10856-016-5763-9. 

458 

29. 

Ö stman, A. (2017). PDGF receptors in tumor stroma: Biological effects and 

459 

associations with prognosis and response to treatment. Preprint, 

460 

10.1016/j.addr.2017.09.022 10.1016/j.addr.2017.09.022. 

461 

30. 

He, P., Lim, K., Sun, D., Pett, J.P., Jeng, Q., Polanski, K., Dong, Z., Bolt, L., 

462 

Richardson, L., Mamanova, L., et al. (2022). A human fetal lung cell atlas uncovers 

463 

proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 

464 

185

, 4841-4860.e25. 10.1016/J.CELL.2022.11.005. 

465 

31. 

Negretti, N.M., Plosa, E.J., Benjamin, J.T., Schuler, B.A., Habermann, A.C., Jetter, 

466 

C.S., Gulleman, P., Bunn, C., Hackett, A.N., Ransom, M., et al. (2021). A single-cell 

467 

atlas of mouse lung development. Development 

148

. 10.1242/dev.199512. 

468 

32. 

Ornitz, D.M., and Itoh, N. (2001). Fibroblast growth factors. Preprint, 10.1007/978-3-

469 

662-46875-3_2175 10.1007/978-3-662-46875-3_2175. 

470 

33. 

Lebeche, D., Malpel, S., and Cardoso, W. V (1999). Fibroblast growth factor 

471 

interactions in the developing lung. Mech Dev 

86

, 125–136. 

472 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

34. 

Yuan, T., Volckaert, T., Chanda, D., Thannickal, V.J., and De Langhe, S.P. (2018). 

473 

Fgf10 Signaling in Lung Development, Homeostasis, Disease, and Repair After Injury. 

474 

Preprint, 10.3389/fgene.2018.00418 10.3389/fgene.2018.00418. 

475 

35. 

Travis WD  Müller-Hermelink HK, B.E. (2004). Pathology and Genetics: Tumours of 

476 

the Lung, Pleura, Thymus and Heart. International agency for research on cancer 

1

477 

36. 

Koopmans, T., and Rinkevich, Y. (2018). Mesothelial to mesenchyme transition as a 

478 

major developmental and pathological player in trunk organs and their cavities. 

479 

Preprint, 10.1038/s42003-018-0180-x 10.1038/s42003-018-0180-x. 

480 

37. 

Perantoni, A.O., Dove, L.F., and Karavanova, I. (1995). Basic fibroblast growth factor 

481 

can mediate the early inductive events in renal development. Proc Natl Acad Sci U S A 

482 

92

. 10.1073/pnas.92.10.4696. 

483 

38. 

Dudley, A.T., Godin, R.E., and Robertson, E.J. (1999). Interaction between FGF and 

484 

BMP signaling pathways regulates development of metanephric mesenchyme. Genes 

485 

Dev 

13

. 10.1101/gad.13.12.1601. 

486 

39. 

Schelch, K., Wagner, C., Hager, S., Pirker, C., Siess, K., Lang, E., Lin, R., Kirschner, 

487 

M.B., Mohr, T., Brcic, L., et al. (2018). FGF2 and EGF induce epithelial-mesenchymal 

488 

transition in malignant pleural mesothelioma cells via a MAPKinase/MMP1 signal. 

489 

Carcinogenesis 

39

. 10.1093/carcin/bgy018. 

490 

40. 

García-Domínguez, C.A., Martínez, N., Gragera, T., Pérez-Rodríguez, A., Retana, D., 

491 

León, G., Sánchez, A., Oliva, J.L., Pérez-Sala, D., and Rojas, J.M. (2011). Sprouty2 

492 

and spred1-2 proteins inhibit the activation of the ERK pathway elicited by 

493 

cyclopentenone prostanoids. PLoS One 

6

. 10.1371/journal.pone.0016787. 

494 

41. 

Ichise, T., Yoshida, N., and Ichise, H. (2014). FGF2-induced Ras-MAPK signalling 

495 

maintains lymphatic endothelial cell identity by upregulating endothelial-cell-specific 

496 

gene expression and suppressing TGFβ signalling through Smad2. J Cell Sci 

127

497 

10.1242/jcs.137836. 

498 

42. 

Tan, Y., Qiao, Y., Chen, Z., Liu, J., Guo, Y., Tran, T., Tan, K. Sen, Wang, D.Y., and 

499 

Yan, Y. (2020). FGF2, an Immunomodulatory Factor in Asthma and Chronic 

500 

Obstructive Pulmonary Disease (COPD). Preprint, 10.3389/fcell.2020.00223 

501 

10.3389/fcell.2020.00223. 

502 

43. 

Stahl, M., and Tallman, M.S. (2019). Acute promyelocytic leukemia (APL): remaining 

503 

challenges towards a cure for all. Preprint, 10.1080/10428194.2019.1613540 

504 

10.1080/10428194.2019.1613540. 

505 

44. 

Shelton, E.L., Galindo, C.L., Williams, C.H., Pfaltzgraff, E., Hong, C.C., and Bader, 

506 

D.M. (2013). Autotaxin Signaling Governs Phenotypic Heterogeneity in Visceral and 

507 

Parietal Mesothelia. PLoS One 

8

. 10.1371/journal.pone.0069712. 

508 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

45. 

Blum, W., Pecze, L., Felley-Bosco, E., and Schwaller, B. (2015). Overexpression or 

509 

absence of calretinin in mouse primary mesothelial cells inversely affects proliferation 

510 

and cell migration. Respir Res 

16

. 10.1186/s12931-015-0311-6. 

511 

 

 

512 

 

513 

 

 

514 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

Figure Legends 

515 

Figure 1. Isolation of Mesothelial cell progenitors (MPCs) from pig fetuses.

 (A) 

516 

Schematic illustration of pig MPC isolation: The embryonic thorax (middle panel in A) was 

517 

isolated from E80 pig fetuses (left panel in A) and treated with the following procedures. (i) 

518 

scraping MPCs followed by trypsinization with 0.05% trypsin in the tube: (ii) trypsinization 

519 

with 0.05% trypsin directly on the thorax. In both methods, the mesothelial cell was 

520 

neutralized with DMEM + 10% FBS, followed by PBS washing and filtration with a cell 

521 

strainer to remove the residual connective tissue. The trypsinization on the porcine thorax (ii) 

522 

method showed a higher yield of MPC expansion than the scraping method (i) (right panels 

523 

in A). (B) Graphs: quantitative qRT-PCR (RT-qPCR) analysis of type I collagen (

COL1A1

), 

524 

integrin beta-1 (

ITGB1

), and 

CD44

 cultured in a basal culture medium. 

Error bars represent 

525 

mean 

±

 SD.

 

Each plot showed different biological replicates (n = 3). 

Each gene expression 

526 

was normalized with the housekeeping gene (

GAPDH

) expression. (C) Representative phase 

527 

contrast images of MPCs isolated from E80 pig thorax cultured on different cell culture dish 

528 

coating conditions. Col I: type I collagen coating, HA: hyaluronic acid coating, Non: non-

529 

coating. (D) Graphs: Quantification of the isolated pig MPC number per each field. 

Each plot 

530 

showed different biological replicates (n = 3).

 (E) Representative immunofluorescence (IF) 

531 

image of MPC after 3 days of culture. Red: WT1, Green: α-SMA, Blue: DAPI. Scale bars: 

532 

(A) 1 cm, (C) 100 μm, (E) 20μm. *p<0.05, ****p<0.0001, ns: no significant difference by 

533 

one-way ANOVA test and t-test in (D).      

534 

  

535 

Figure 2. MPC self-renewal by FGF2, PDGF-BB stimulation.

 (A) Representative IF 

536 

images of MPCs after 3 days of treatment with FGF2, PDGF, SU5404 (FGF signaling 

537 

inhibitor, SU), a CP673451 (PDGF signaling inhibitor, CP), or Control (no treatment). FGF2 

538 

and PDGF-BB showed more cell numbers per field. WT1 (red), Ki67 (blue), DAPI (grey). 

539 

Arrows (white): WT1

+

Ki67

+

 cells. (B) Graph: Quantification of cell numbers per field with 

540 

each marker from IF images in (A). (n = 4) (C-F) Graphs: quantification of cell number from 

541 

IF images with total cell number (C), WT1

+

 cell number (D), Ki67

+

 proliferative cell number 

542 

(E), and proportion of WT1

+

Ki67

+

 proliferative MPCs (F). 

Error bars represent mean 

±

 SD.

 

543 

Each plot showed different biological replicates 

(n = 4). (G-I) Graphs: RT-qPCR analysis of 

544 

WT1

 mRNA expression after 3 days of culture with FGF2, PDGF-BB, SU, and CP (G). 

WT1

 

545 

mRNA expression during long-term culture by FGF2 (H) and PDGF-BB treatment (I). 

Error 

546 

bars represent mean 

±

 SD.

 

Each plot showed different biological replicates (n = 3). 

Relative 

547 

mRNA expression of each gene was normalized with the control basal culture condition. 

548 

Scale bars = 20 μm. *p< 0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns: no significant 

549 

difference by one-way ANOVA test and t-test in (C-F).  

550 

 

551 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

 

552 

Figure 3. MPC differentiation into α-SMA

+

 smooth muscle cell by BMP4 stimulation.

  

553 

(A) Representative IF images of MPC after 3 days of treatment with BMP4, dorsomorphin 

554 

(BMP signaling inhibitor, Dor), or Control (no treatment). BMP4 induced α-SMA expression, 

555 

while a Dor reduced its expression. WT1 (red), α-SMA (green), Ki67 (blue), and DAPI 

556 

(grey). Arrows (white): WT1

+

α-SMA

+

 cells, asterisks: WT1

+

Ki67

+

α-SMA

+

 cells, arrowhead 

557 

(white): WT1

-

α-SMA

+

 cells. (B-C) Graphs: RT-qPCR analysis of 

WT1 

and 

α-SMA 

mRNA 

558 

expression for 3 days of MPCs culture with BMP4, Dor, or Control (B) and long-term culture 

559 

(C). 

Error bars represent mean 

±

 SD.

 

Each plot showed different biological replicates (n = 3). 

560 

Relative mRNA expression of each gene was normalized with the control basal culture 

561 

condition. (D) Quantification of cell numbers per field with each marker from IF images in 

562 

(A). (E-I) Quantification of cell number from IF with α-SMA

+

 cell proportion (E), total cell 

563 

number(F), WT1

+

 cell proportion (G), Ki67

+

 proliferating cell number (H), the proportion of 

564 

WT1

+

α-SMA

+

 primed cells in WT1

+

 cells (I), WT1

-

α-SMA

+

 cells in SMA

+

 cells (J), and 

565 

WT1

+

α-SMA

cells in α-SMA

+

 cells (K). 

Error bars represent mean 

±

 SD.

 

Each plot showed 

566 

different biological replicates 

(n = 4). Scale bars = 20 μm. *p< 0.05, **p<0.01, ***p<0.001, 

567 

****p<0.0001, ns: no significant difference by one-way ANOVA test and t-test in (B, C, E-

568 

K).  

569 

  

570 

Figure 4. FGF2 and PDGF suppressed MPC differentiation into smooth muscle cells. 

571 

(A-B) Graphs: RT-qPCR analysis of α-SMA. 

α-SMA

 mRNA expression after 3 days of MPCs 

572 

culture with FGF2, PDGF-BB, BMP4, and its inhibitors (SU, CP, Dor) (A) and long-term 

573 

culture of MPCs with FGF2, PDGF-BB (B). 

Error bars represent mean 

±

 SD.

 

Each plot 

574 

showed different biological replicates (n = 3). 

Relative mRNA expression of each gene was 

575 

normalized with the control basal culture condition. (C-E) Graphs: Quantification of cell 

576 

proportion from IF of MPCs (from 

Figure 2, 3

) with α-SMA

+

 cell proportion (C), proportion 

577 

of WT1

+

α-SMA

cells in WT1

+

 cells (D), and proportion of Ki67

+

α-SMA

cells in α-SMA

578 

cells (E).

 Error bars represent mean 

±

 SD.

 

Each plot showed different biological replicates

 (n 

579 

= 4) (F) Schematic summary of MPC self-renewal and differentiation into SMC by FGF2, 

580 

PDGF-BB, and BMP4. **p<0.01, ***p<0.001, ****p<0.0001, ns: no significant difference 

581 

by one-way ANOVA test and t-test in (A-E)  

582 

 

583 

Figure 5. The dominance of FGF2 effect over BMP signaling in MPC pool regulation.  

584 

(A-B) Graphs: RT-qPCR analysis of WT1 and 

α-SMA 

mRNA expression of MPC culture 

585 

with signaling molecules and its combination during 3 days of culture (A) and long-term 

586 

culture (B). (C) Graph: Quantification of cell numbers per field with each marker from IF 

587 

images. (n = 4) (D-G) Graphs: quantification of cell number from IF with total cell number 

588 

(D), WT1

+

 cells (E), Ki67

+

 cells (F), and α-SMA

+

 cells (G). (n = 4) (H-I) Graphs: proportion 

589 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

of WT1

+

α-SMA

+

 cells in WT1

+

 cells (H), proportion of WT1

+

α-SMA

+

 cells in α-SMA

+

 cells 

590 

(I). 

Error bars represent mean 

±

 SD.

 

Each plot showed different biological replicates 

(n = 4) 

591 

Scale bars = 20 μm. *p<0.05, **p<0.01, ****p<0.0001, ns: no significant difference by one-

592 

way ANOVA test and t-test in (A-I). 

593 

 

594 

Figure 6. 

-catenin (wnt) activation induced the maturation of MPCs to CALB2

+

 

595 

mature mesothelial cells.

 (A-B) Graphs: RT-qPCR analysis of 

WT1

α-SMA

CALB2

, and 

596 

MSLN

 mRNA expression for long-term culture of MPC treatment with CHIR99021 (CHIR) 

597 

(A), and FGF2, BMP4 (B). 

Error bars represent mean 

±

 SD.

 

Each plot showed different 

598 

biological replicates (n = 3). 

Relative mRNA expression of each gene was normalized with 

599 

the control basal culture condition. (C) Representative IF images of MPCs after 3 days of 

600 

treatment with BMP4 and CHIR. CALB2 (red), DAPI (blue). (C) Graph: quantification of 

601 

CALB2

+

 cell number from IF. 

Error bars represent mean 

±

 SD.

 

Each plot showed different 

602 

biological replicates 

(n = 4). Scale bars = 20 μm. *p<0.05, **p<0.01, ***p<0.001, 

603 

****p<0.0001, ns: no significant difference by one-way ANOVA test and t-test in (A, B, D).  

604 

 

605 

Figure 7.

 

Schematic model of embryonic pig MPC cell behavior control by intertwined 

606 

signaling.

 FGF2 induces self-renewal of WT1

+

 MPC. MPC differentiates into α-SMA

+

 SMC 

607 

through primed WT1

+

α-SMA

+

 cells by BMP4 stimulation. FGF and PDGF signaling 

608 

suppresses the BMP4-mediated SMC differentiation. Developing mesothelium shows stage-

609 

specific markers: high WT1 expression in the early pseudoglandular stage of porcine lung 

610 

development and low WT1 expression and CALB2 expression in the calanlicular~alveolar 

611 

stage. Wnt activation by CHIR facilitates the MPC maturation process. The role of WT1

-

α-

612 

SMA

-

 unknown pools in MPC proliferation and differentiation is unclear.   

613 

 

 

614 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

Figure 1. 

615 

 

616 

 

617 

 

 

618 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

Figure 2. 

619 

 

620 

 

 

621 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

Figure 3. 

622 

 

623 

 

 

624 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

Figure 4. 

625 

 

626 

 

 

627 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

Figure 5. 

628 

 

629 

 

 

630 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

Figure 6. 

631 

 

632 

 

 

633 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

Figure 7. 

634 

 

 

635 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

STAR

Methods

 

636 

Key resources table 

637 

 

638 

REAGENT or RESOURCE 

SOURCE 

IDENTIFIER 

Antibodies 

Rabbit anti-WT1 

Proteintech 

Cat#12609-1-AP 

RRID:AB_2216225

 

Mouse anti-α-SMA 

Bio-Rad 

Cat#MCA5781GA 

RRID:AB_3076452

 

Chicken anti-Ki-67 

Novus Biologicals 

Cat#NBP3-05538 

RRID: AB_3076453

 

Mouse anti-calretinin (2D7A9) 

Thermo Fisher Scientific 

Cat#66496 

RRID:AB_2664066

 

Chicken anti-calretinin 

EnCor Biotechnology 

Cat#CPCA-Calret 

RRID:AB_2572241

 

Rabbit anti-cleaved caspase-3 (Asp175) 

Cell Signaling 

Cat#9661 

RRID:AB_2341188

 

Rabbit anti-mesothelin (D9R5G) 

Cell Signaling 

Cat#99966 

RRID:AB_2800323

 

Rabbit anti-mesothelin (SP74) 

Abcam 

Cat#93620 

RRID:AB_10563844

 

Mouse anti-mesothelin (MSLN/2131) 

Novus Biologicals 

Cat#NBP2-79724 

RRID: AB_3076454

 

Donkey anti-mouse Alexa 488 

Invitrogen  

Cat#A21202 

RRID:AB_141607

 

Donkey anti-mouse Alexa 647 

Invitrogen 

Cat#A10042 

RRID:AB_2534017

 

Donkey anti-rabbit Alexa 568 

Invitrogen 

Cat#A31571 

RRID:AB_162542

 

Donkey anti-chicken Alexa 488 

Jackson Immunoresearch 
Labs 

Cat#703-545-155 

RRID:AB_2340375

 

Goat anti-chicken HRP 

Invitrogen 

Cat#A16054 

RRID:AB_2534727

 

Chemicals, peptides, and recombinant proteins 

Cy3 tyramide 

AAT Bioquest 

Cat#11065 

RBC Lysis Buffer (10x) 

Biolegend 

Cat#420301 

NucBlue™ Live ReadyProbes™ Reagent (Hoechst 33342) 

Invitrogen 

Cat#R37605 

rhEGF 

R&D Systems 

Cat#236-EG 

rhFGF-basic 

PeproTech 

Cat#100-18B 

SU5402 

MedChem Express 

Cat#HY-10407 

rhPDGF-BB 

R&D Systems 

Cat#220-BB 

CP673451 

MedChem Express 

Cat#HY-12050 

rhBMP4 

R&D Systems 

Cat#314-BP 

Dorsomorphin 

Tocris 

Cat#3093 

CHIR99021 

MedChem Express 

Cat#HY-10182 

Ascorbic acid 

Fisher Chemical 

Cat#FLA61100 

Retinoic acid 

Sigma-Aldrich 

Cat#R2625 

Purmorphamine 

Tocris 

Cat#4551 

Critical commercial assays 

PrimeScript RT Master Mix (Perfect Real time)  

Takara Bio 

Cat#RR036B 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

Direct-zol™ RNA Purification kit 

Zymo Research 

Cat#R2062 

Luna Universal qPCR Master Mix 

New England Biolabe 
(NEB) 

Cat#M3003X 

Deposited data 

Human RNA-seq 

 

 

Mouse RNA-seq 

 

 

Pig RNA-seq 

 

 

Experimental models: Organisms/strains 

Mouse: Crl:CD1(ICR) 

Charles River 
Laboratories 

Strain: 022 

Yucatan pig 

Sinclair 

BioResources 

N/A 

Oligonucleotides 

qPCR primers, see Table S1 

This paper 

N/A 

Software and algorithms 

GraphPad Prism 10.0 

https://www.graphpad.co
m/

  

N/A 

Cellpose 

https://www.cellpose.org
/

  

N/A 

ImageJ 

https://imagej.net/ij/

  

N/A 

Leica Application Suite X (LAS X) 

https://www.leica-
microsystems.com/

  

N/A 

Other 

Fetal Bovine Serum 

Cytiva 

Cat#SH30088.03HI 

Trypsin-EDTA (0.05%) 

Gibco 

Cat#25300054 

Trypsin-EDTA (0.25%) 

Gibco 

Cat#15050065 

DMEM medium, high glucose 

Cytiva 

Cat#SH30243.02 

 

639 

Resource availability 

640 

Lead contact 

641 

Further information and requests for resources and reagents should be directed to and will 

642 

be fulfilled by the lead contact, Munemasa Mori (

mm4452@cumc.columbia.edu

). 

643 

Materials availability 

644 

All biological materials used in this study are available from the 

lead contact

 upon request. 

645 

Data and code availability 

646 

 

This paper does not report original code. 

647 

 

Any additional information required to reanalyze the data reported in this paper is 

648 

available from the 

lead contact

 upon request.  

649 

  

650 

Experimental model and study participant details 

651 

Animals 

652 

All surgical procedures were conducted under the approval of the Columbia University 

653 

Institutional Animal Care and Use Committee and USAMRMC Animal Care and Use Review 

654 

Office (ACURO). For pig experiment, Timed-pregnant Yucatan miniature sows were 

655 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

obtained from Sinclair BioResources. For mouse experiment, CD-1 mice (male (8 weeks), 

656 

female (8 weeks)) were purchased from Charles River Laboratories. 

657 

 

658 

Parietal pig mesothelial progenitor cell (MPC) isolation 

659 

E80 Yucatan pig embryo was surgically collected from the Yucatan pig mother. After 

660 

euthanization, the thorax was collected. For MPC isolation, we performed 2 methods; 1) the 

661 

mesothelial tissue was isolated from the E80 pig thoracic wall with a cell scraper (Fisher 

662 

Scientific), by following incubation in 0.25% trypsin-EDTA solution for 20 min at 37 

o

C and 

663 

2) 0.25% trypsin treatment on the thoracic wall, by following 20 min incubation at 37 

o

C. 

664 

After trypsin-EDTA treatment, the dissociated cell was washed with PBS by centrifuge and 

665 

replacement of the PBS (350 x g, 5 min, 4 

o

C). The cell pellet was incubated in RBC lysis 

666 

buffer solution for 10 min at 4

o

C for RBC lysis (Biolegend), following PBS wash by 

667 

centrifuge (350 x g, 5 min, 4 

o

C). After washing with PBS, the cell pellet was filtered with a 

668 

cell strainer (40um pore size, MTC Bio) and seeded on a type I collagen (from rat tail, 

669 

Sigma-Aldrich)- coated 6-well tissue culture plate. The MPCs (P0) were cultured in MPC 

670 

culture medium (DMEM (high glucose, Gibco) + 10% FBS (Cytiva) + 1% pen/strep (Gibco)) 

671 

for 7 days. For passage, MPCs were washed with PBS and dissociated with 0.05% trypsin-

672 

EDTA (Gibco) for 5min at 37

o

C). For MPC culture and its analysis for the experiments, 

673 

passages 6-8 MPC were cultured on gelatin-coated tissue culture plates. 

674 

 

675 

Parietal mouse mesothelial progenitor cell (MPC) isolation 

676 

Mouse MPC was isolated from E17.5 embryonic thorax by treatment of 0.05 % or 0.25 % 

677 

trypsin-EDTA (Gibco) solution for 20 min at 37 

o

C. The isolation procedure was the same as 

678 

pig MPC isolation. The mouse MPC was cultured in an MPC culture medium with the 

679 

replacement of the cell culture media every other day. 

680 

 

681 

Parietal pig mesothelial progenitor cell (MPC) culture 

682 

To investigate the MPC cell fate by signaling molecules, MPCs were cultured in the MPC 

683 

culture medium with various signaling molecules (FGF2 (Peprotech), PDGF-BB, BMP4 

684 

(R&D systems), retinoic acid (RA, Sigma-Aldrich), CHIR99021 (MedChem Express), 

685 

ascorbic acid (AA, Fisher Chemical), purmorphamine (Shh, Tocris)) and the inhibitors 

686 

(SU5402 as FGFR inhibitor (MedChem Express), CP673451 as PDGFR inhibitor (MedChem 

687 

Express), and dorsomorphin (Tocris) for 3, 10, or 14 days. During MPC culture, the MPC 

688 

culture medium, including signaling molecules, was replaced every other day and passaged 

689 

at day 3, 6, and 10 to avoid full confluency.  

690 

 

691 

RT-qPCR 

692 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

mRNA was isolated from MPCs with Direct-zol RNA Microprep isolation kit (Zymo 

693 

Research) after lysis of MPCs with IBI isolate total reagent (IBI Scientific). For cDNA 

694 

synthesis, the isolated mRNA was mixed with PrimeScript RT Master Mix (Takara bio), 

695 

followed by cDNA synthesis protocol. For RT-qPCR analysis, the synthesized cDNA was 

696 

mixed with qPCR primers and Luna Universal qPCR Master Mix (New England Biolabs 

697 

(NEB). RT-qPCR was conducted with Quantstudio (Applied Biosystems). mRNA expression 

698 

of each gene was normalized with the housekeeping gene (GAPDH). The relative mRNA 

699 

expression of the genes was normalized with the control group (MPC culture in DMEM + 

700 

10% FBS + 1% pen/strep).  

701 

 

702 

Immunofluorescence (IF) 

703 

For cell sample preparation, MPCs were fixed with 3.7% paraformaldehyde (PFA) for 10 

704 

min at room temperature. For tissue sample preparation, 10um-frozen sectioned tissue 

705 

samples were washed with PBS 3 times, followed by antigen retrieval with citrate-based 

706 

buffer (Vector Laboratories) in the microwave for 8 min. After washing the cells and the 

707 

tissue samples with PBS 3 times, the primary antibodies in dilution solution (0.25% triton X-

708 

100 + 0.75% BSA in PBS) were treated to the samples and incubated at 4

o

C for overnight. 

709 

After 3 times PBS wash on the following day, the secondary antibodies and DAPI were 

710 

treated (0.75% BSA in PBS) for 1 hour at room temperature. Then, the sample was mounted 

711 

with a coverglass, anti-fade reagent (Invitrogen). For pig cell/tissue CALB2 staining, 

712 

primary antibody-treated samples were treated with HRP conjugated anti-chicken antibody 

713 

(in PBS) and incubated for 30 min at room temperature. After PBS wash, Cy3 tyramide 

714 

(1:1000 diluted in 100 mM borate + 0.1% Tween-20 + 0.003 % H

2

O

2

 solution (pH 8.5)) was 

715 

treated in the samples and incubated for 15 min at room temperature in the dark. After PBS 

716 

wash, the samples were mounted with a coverglass and an anti-fade reagent (Invitrogen). 

717 

The cell samples were visualized with a Leica DMI microscope (Leica). The tissue samples 

718 

were visualized with a Zeiss confocal microscope (Zeiss).  

719 

 

720 

RNA-seq data analysis 

721 

For human and mouse RNA-seq data analysis, we utilized the database from the previous 

722 

studies.

30,31

      

723 

 

724 

Quantification and statistical analysis 

725 

Quantification of cell number in the phase contrast images was conducted by ImageJ. For 

726 

immunostained cell (single-immunostained and co-immunostained cell population) and 

727 

DAPI-stained cell counting from IF images, Cellpose software was used. The mean 

728 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint 

2024.01.31.577512.full-html.html
background image

fluorescence intensity (MFI) of each IF sample was measured in the non-overlapping random 

729 

fields using ImageJ software. Data analysis was performed using Prism 10. Data acquired by 

730 

performing biological replicas ((n = 3) for RT-qPCR and phase contrast images, (n = 4) for 

731 

IF images) of three or four independent experiments are presented as the mean 

±

 standard 

732 

derivation (SD). Statistical significance was determined using a one-way ANOVA or a two-

733 

tailed t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: non-significant. 

734 

 

735 

 

736 

Additional resources 

737 

Human scRNA-seq

https://cellxgene.cziscience.com/e/f9846bb4-784d-4582-92c1-

738 

3f279e4c6f0c.cxg/

  

739 

Mouse sdRNA-seq:

 

https://lungcells.app.vumc.org/

 

 

740 

 

741 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 2, 2024. 

https://doi.org/10.1101/2024.01.31.577512

doi: 

bioRxiv preprint