background image

Pathway  metabolite  ratios  reveal  distinctive  glutamine  metabolism  in  a  subset of 

proliferating cells 

Nancy T Santiappillai

1

, Yue Cao

2,3

, Mariam F Hakeem-Sanni

1

, Jean Yang

2,3

, Lake-Ee Quek

2

Andrew J Hoy

1,

1

The University of Sydney, Charles Perkins Centre, School of Medical Sciences, Sydney, New 

South Wales, 2006, Australia. 

2

The University of Sydney, Charles Perkins Centre, School of Mathematics and Statistics, 

Sydney, New South Wales, 2006, Australia. 

3

The University of Sydney, Sydney Precision Data Science Centre, Sydney, New South Wales, 

2006, Australia. 

10 

*Corresponding author. Tel: +61 2 9351 2514; Email: 

andrew.hoy@sydney.edu.au

 

 

11 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

ABSTRACT

 

12 

Large-scale metabolomic analyses of pan-cancer  cell line  panels  have provided significant 

13 

insights into the relationships between metabolism and cancer cell biology. Here, we took a 

14 

pathway-centric  approach  by  transforming  targeted metabolomic data into ratios to study 

15 

associations between reactant and product metabolites in a panel of cancer and non-cancer cell 

16 

lines. We identified five clusters of cells from various tissue origins. Of these, cells in Cluster 

17 

4 had high ratios of TCA cycle metabolites relative to pyruvate, produced more lactate yet 

18 

consumed less glucose and glutamine, and greater OXPHOS activity compared to Cluster 3 

19 

cells with low TCA cycle metabolite ratios. This was due to more glutamine cataplerotic efflux 

20 

and not glycolysis in cells of Cluster 4. 

In silico

  analyses of loss-of-function and drug 

21 

sensitivity screens showed that Cluster 4 cells were more susceptible to gene deletion and drug 

22 

targeting of lactate and glutamine metabolism, and OXPHOS than cells in Cluster 3. Our results 

23 

highlight  the  potential of pathway-centric approaches to reveal new aspects of cellular 

24 

metabolism from metabolomic data. 

25 

Keywords: 

metabolomics / metabolic pathways / cell lines / cancer / glutamine metabolism / 

26 

glucose metabolism

27 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

INTRODUCTION

 

28 

Cancer cells are characterized by dynamic plasticity of nutrient utilization that supports tumor 

29 

growth and survival (Altea-Manzano

 et al

, 2020; Fendt

 et al

, 2020; Pavlova

 et al

, 2022). Our 

30 

understanding of the role of metabolism in cancer cell biology has predominantly arisen from 

31 

studies  taking  cancer  type-specific  and/or metabolic pathway-focused approaches  (for 

32 

example, Hensley

 et al

, 2016, Kamphorst

 et al

, 2015, and Wang

 et al

, 2023).  

33 

More recently,  several  publications  have reported the outcomes of  high-throughput 

34 

metabolomics using pan-cancer cell line panels, such as the NCI-60 (60 cell lines, Jain

 et al

35 

2012; Ortmayr

 et al

, 2019) and CCLE panels (928 cell lines, Li

 et al

, 2019), CAMP (988 tissue 

36 

samples, Benedetti

 et al

, 2023), and other panels containing 180 cell lines (Cherkaoui

 et al

37 

2022), and 173 cell lines (Shorthouse

 et al

, 2022). These studies primarily aimed to identify 

38 

links between cancer cell metabolic phenotypes and transcriptional regulation (Benedetti

 et al.

39 

2023; Ortmayr

 et al.

, 2019), or genetic alterations and dependencies (Li

 et al.

, 2019; Mullen & 

40 

Singh, 2023) that were associated with drug-sensitivities (Shorthouse

 et al.

, 2022). Notably, 

41 

Cherkaoui and colleagues (2022)  took a top-down approach by clustering the metabolome 

42 

acquired by untargeted metabolomics across 49 KEGG metabolic pathways of 180 cancer cells. 

43 

Pathway activity was determined for each cell line, and they identified only two clusters that 

44 

were  defined by either  high  carbohydrate metabolic  activity or high  aerobic mitochondrial 

45 

activity, that was associated with epithelial or mesenchymal status, respectively (Cherkaoui

 et 

46 

al.

, 2022).  

47 

Here, we took a different approach to  identify common signatures based upon high-flux 

48 

metabolic  pathways  only  in a smaller  pan-cancer  panel of proliferating cells.  Based on 

49 

metabolite levels,  we  initially  identified four clusters of cells,  but this approach failed to 

50 

provide insights into pathway differences. To overcome this issue, we introduce a conceptual 

51 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

innovation to transform our metabolite data into pathway-centric ratios that resulted in the 

52 

formation of five clusters of cells that displayed different ratios of metabolites of glycolysis, 

53 

pentose phosphate pathway, pyruvate-TCA cycle, proline metabolism, serine metabolism, 

54 

glutamine metabolism, and methionine metabolism.  Of these five clusters, we used a 

55 

combination of techniques to show that cells in Cluster 4 had higher  ratios of TCA cycle 

56 

metabolites when normalized to pyruvate and produced more lactate, despite lower glucose 

57 

and glutamine consumption, and greater OXPHOS activity than Cluster 3 with low TCA cycle 

58 

metabolite ratios. These  differences  were, in part,  explained by increased glutamine 

59 

cataplerotic efflux and glutaminolysis. These phenotypes were supported by 

in silico

 analyses 

60 

of pan-cancer loss-of-function and drug sensitivity screens to show that cells in Cluster 4 were 

61 

more susceptible to gene deletion and drug targeting of lactate and glutamine metabolism, and 

62 

OXPHOS compared to the cells in Cluster 3. These results highlight the benefit of converting 

63 

metabolite levels into pathway-based ratios as a starting point for gaining insights into cellular 

64 

metabolic activity.

 

 

65 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

RESULTS 

66 

Targeted metabolomic profiling of high flux pathways in cell lines from 11 tissue origins. 

67 

We quantified the metabolite levels of high flux pathways, including central carbon (glycolysis, 

68 

TCA cycle, pentose phosphate pathway) and amino acid metabolic pathways, in 57 adherent 

69 

cell lines (49 tumor- and 8 normal epithelial-derived) from 11 cancer types cultured in basal 

70 

media conditions (Appendix Table 1)

.

 Samples were generated in triplicate across 6 batches, 

71 

including control cell lines for batch correction, ensuring consistency throughout the complete 

72 

data set (Fig 1A). K-means algorithms with Pearson’s correlation of the batch-corrected dataset 

73 

identified 4 distinct clusters of cells (Fig 1B), which were not a consequence of the culturing 

74 

conditions, tissue type (normal epithelial vs. tumor), cancer type, tissue origin, or the mutation 

75 

status of common oncogenic drivers that influence cell metabolism (Cairns

 et al

, 2011; Jia

 et 

76 

al

, 2008; Jones & Thompson, 2009; Oermann

 et al

, 2012; Vousden & Ryan, 2009) (Fig 1C).  

77 

All clusters contained tumor and normal cell lines from different tissue origins (Fig 1B). 

78 

However, there were some instances where cell lines from the same tissue origin clustered 

79 

together, such as Cluster 3 that was enriched with prostate cancer cells and Cluster 4 with 

80 

endometrial cancer cells (Fig 1B), which has been observed in another pan-cancer metabolome 

81 

study (Shorthouse

 et al.

, 2022). Despite the identification of heterogeneous clusters of cells 

82 

based upon the levels of metabolites of high flux pathways, there was no clear organization of 

83 

these metabolites into pathways (Fig 1B), likely because strong metabolite interactions are 

84 

often localized at the reaction level (Benedetti

 et al.

, 2023), that could underpin a testable 

85 

hypothesis centered on differences and similarities of pathway activity.  

86 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

Figure 1: The metabolome landscape of cells from 11 tissue origin sites. 

87 

A.

 

Schematic of the workflow for targeted metabolomics profiling of 57 cell lines to identify and 

88 

validate metabolic signatures. 

89 

B.

 

Heatmap of scaled metabolite expression across central carbon and amino acid metabolism within 

90 

the cell line panel (n=57). Cell lines color coded by cancer type and tissue type. 

91 

C.

 

Clusters of cell lines from (B) appended with color coded legends for mutant status of common 

92 

oncogenic drivers, culturing media conditions, tissue origins, cancer type, and tissue types.  

93 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

Analyses of pathway-centric metabolite ratios uncover distinctive metabolic signatures. 

94 

Next, we took a physiological-based approach and evaluated the hypothesis that there were 

95 

differences in high-flux metabolic pathways in our panel of cancer and epithelial cells. To 

96 

achieve  this,  we  transformed our metabolomic data by  calculating  the ratios  between an 

97 

upstream precursor or reactant metabolite (applied as the denominator) and downstream 

98 

pathway product metabolites (numerator) for each central carbon and major amino acid 

99 

metabolism pathway, similar to Benedetti

 et al.

 (2023). This pathway-centric transformation 

100 

was based on the idea that metabolite conversion forms a cascade,  and therefore,  intrinsic 

101 

correlations likely exist between reactant and product that provide biologically meaningful 

102 

insights into pathway activity. For example, glucose is the precursor of glycolysis, and as such, 

103 

ratios of the abundance of glycolytic metabolites relative to glucose were calculated (Fig 2A). 

104 

K-means algorithms with Pearson’s correlation of the entire metabolite ratio dataset spanning 

105 

seven metabolic pathways of interest (glycolysis, pentose phosphate pathway, pyruvate-TCA 

106 

cycle,  proline metabolism, serine metabolism, glutamine metabolism, and  methionine 

107 

metabolism) identified 5 distinct clusters of cells (Appendix Fig S1A). These clusters differed 

108 

from what was identified using metabolite abundances alone (Fig 1) and were composed of 

109 

cells  from  different tissue origins, tissue types, cancer types, mutation status of common 

110 

oncogenic drivers, and culturing conditions (Appendix Fig S1B).  

111 

To assist in interpreting the patterns in the data, the primary heatmap (Appendix Fig S1A) was 

112 

separated into individual panels with the cell clusters conserved (Fig 2). The subset of cells in 

113 

Cluster 3 had greater glycolysis (Fig 2A) and pentose phosphate pathway metabolite ratios 

114 

(PPP; Fig 2B) but lower TCA cycle (relative to pyruvate; Fig 2C) and proline metabolism ratios 

115 

(Fig 2D) compared to Cluster 2. We identified differences in serine metabolism between cells 

116 

in Clusters 4 and 5 (Fig 2E) and less striking differences in glutamine (Fig 2F) and methionine 

117 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

(Fig 2G) metabolism between clusters.  Together, our approach  of  transforming  metabolite 

118 

levels into pathway-specific ratios identified  groups of  cancer cells from different tissue 

119 

lineages defined by differences in high flux metabolic pathways, not evident by metabolite 

120 

levels alone.  

121 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

 

122 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

10 

Figure 2: Pathway-centric metabolite ratios identifies clusters of cells. 

123 

A-G.

 

Metabolite ratio heatmaps formed by normalization of (A) glycolysis pathway and (B) pentose 

124 

phosphate pathway metabolites to intracellular glucose, (C) TCA cycle pathway metabolites to 

125 

pyruvate, (D) proline metabolism metabolites to proline, (E) serine metabolism metabolites to 

126 

serine, (F) glutamine metabolism metabolites to glutamine, and (G) methionine metabolism to 

127 

methionine. Heatmaps are slices from Appendix Figure S1. 

128 

Differences in TCA cycle metabolite  to pyruvate ratios  are due to glutamine  and not 

129 

glucose metabolism. 

130 

We next addressed a significant limitation of metabolomic data. To date, irrespective of how 

131 

the metabolomics data  is analyzed,  we often cannot  infer  function/flux.  Here, we use  our 

132 

pathway-centric analyses to  validate that the  clusters  formed  (from where??) from  our 

133 

pathway-centric analyses exhibited functional differences. Since the TCA cycle is an essential 

134 

hub where various pathways converge and is critical for energy and biomass production and 

135 

cell viability (Spinelli & Haigis, 2018) (Fig 3A), we chose to contrast Cluster 3 and Cluster 4 

136 

from the identified five clusters formed in Figure 2, as  they had  distinctive TCA cycle 

137 

metabolite levels relative to pyruvate (Fig 3B). Firstly, Cluster 4 cells had greater TCA cycle 

138 

metabolite levels relative to pyruvate (Multiple unpaired t-tests, P-value<0.001), except for 

139 

oxoglutarate and NADPH (Fig 3C).  Differences in succinate  and malate levels relative to 

140 

pyruvate were also evident at the cell line level (Fig 3D).  

141 

As pyruvate was used as the denominator to calculate TCA cycle metabolite ratios, we extended 

142 

our analysis to lactate since pyruvate is converted to lactate by lactate dehydrogenase. Cells in 

143 

Cluster 4 had a greater lactate-to-pyruvate ratio, a measure of the equilibrium constant of lactate 

144 

dehydrogenase,  than cells in Cluster 3 (Student t-test, P=0.001; Fig 3E).  There was  no 

145 

difference in the NADH/NAD+  ratio  (Appendix Fig  S2A),  which  are co-factors of lactate 

146 

dehydrogenase and can influence its activity (Luengo

 et al

, 2021). Thus, the greater lactate to 

147 

pyruvate ratio in Cluster 4 cells, compared to Cluster 3 cells, was unlikely driven by excess 

148 

NADH relative to NAD+, but possibly due to carbon surplus in the TCA cycle. 

149 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

11 

150 

Figure 3: Metabolite ratio-based signatures identifies differences in glutamine 

151 

metabolism between clusters. 

152 

A.

 

Schematic of glucose and glutamine sources to the TCA cycle. 

153 

B.

 

Scaled metabolite ratio heatmap of Clusters 4 and 3, derived from TCA cycle pathway metabolites 

154 

calculated using the precursor pyruvate as denominator. 

155 

C.

 

Abundance ratios of TCA cycle metabolites to pyruvate (C4 n=10, C3 n=19, multiple unpaired t-

156 

tests, *p<0.05, error min to max values). 

157 

D.

 

Waterfall plots comparing the scaled metabolite abundance (log 10) of succinate and pyruvate (left), 

158 

and malate and pyruvate (right) for cells of Clusters 3 and 4. 

159 

E.

 

Abundance ratio of lactate to pyruvate (error min to max values) (C4 n=10, C3 n=19). 

160 

F.

 

Lactate production intensity  and glucose and glutamine consumption (consumed % of starting 

161 

substrate concentrations) after 24 hours (C4 n=8, C3 n-6, error min to max values). 

162 

G.

 

Oxygen consumption rates (OCR) at 48 hours, normalized to percent confluency (C4 n=6, C3 n-5, 

163 

3 biological replicates and 4 technical replicates per cell line, mean ± standard error of the mean). 

164 

H.

 

Fractional contribution of [U-

13

C]-glucose to intracellular lactate (C4 n=3, C3 n=4, 3 biological 

165 

replicates and 3 technical replicates per cell line, mean ± standard error of the mean). 

166 

I.

 

Fractional contribution of [U-

13

C]-glutamine to intracellular lactate (C4 n=3, C3 n=4, 3 biological 

167 

replicates and 3 technical replicates per cell line, mean ± standard error of the mean). 

168 

J.

 

Fractional contribution of [U-

13

C]-glutamine to m+3 fructose 1,6-bisphosphate (FBP), and m+3 

169 

phosphoenolpyruvate (PEP) (C4 n=3, C3 n=4, 3 biological replicates and 3 technical replicates per 

170 

cell line, mean ± standard error of the mean). 

171 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

12 

K.

 

Schematic of the C4 phenotype (increased glutamine to the TCA cycle, gluconeogenesis, and 

172 

aerobic glycolysis) compared to C3 (increased glucose and glutamine consumption and glucose 

173 

oxidation). 

174 

Data information: (C-G) *P<0.05 vs Cluster 4 by Unpaired student’s t-test. 

175 

Glycolysis and glutaminolysis both feed the TCA cycle and can produce lactate as a by-product 

176 

(Smith

 et al

, 2016). Next, we sought to determine whether the increased lactate production 

177 

relative to pyruvate in the cells of Cluster 4 compared to Cluster 3 cells was due to greater 

178 

consumption of glucose and/or glutamine. As expected, cells in Cluster 4 produced more lactate 

179 

compared to those in Cluster 3 (Student t-test, P=0.006; Fig 3F), with some cell line-specific 

180 

differences observed (Appendix Fig S2B). Likewise, there were cell line-specific differences 

181 

in  glucose and glutamine consumption over 24 hours (Appendix Fig S2B),  but  somewhat 

182 

surprisingly,  the net consumption of glucose (Student t-test, P-value=0.02) and glutamine 

183 

(Student t-test, P=0.04) were lower in Cluster 4 cells (Fig 3F). In isolation, the higher lactate-

184 

to-glucose yield seen in Cluster 4 could be interpreted as higher aerobic glycolysis, whereas in 

185 

Cluster 3 cells, proportionally more glucose was oxidized instead of being converted to lactate. 

186 

We postulated that Cluster 4 cells are more oxidatively competent and thus have surplus carbon 

187 

that spills into lactate. To test this, we quantified the oxygen consumption rate as a readout of 

188 

oxidative phosphorylation (OXPHOS) activity and, thus, TCA cycle fluxes. In line with our 

189 

prediction, cells in Cluster 4 possessed greater OXPHOS activity than Cluster 3 cells (Student 

190 

t-test, P=0.04; Fig 3G, Appendix Fig S3C). The more efficient respiration may correlate with 

191 

our observation of more abundant TCA cycle metabolites relative to pyruvate (Fig 3C) and 

192 

suggests that the increase in lactate production (Fig 3F) is a consequence of cells using pyruvate 

193 

as a redox sink to regenerate NAD

+

194 

To further resolve the intersection of glucose and glutamine metabolism at pyruvate, which 

195 

underpins the formation of Clusters  3 and 4,  we performed [U-

13

C]-glucose and [U-

13

C]-

196 

glutamine tracing experiments in a subset of cells selected from Clusters 3 and 4. As expected, 

197 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

13 

lactate  was  produced mainly  from glucose  (78-92% enrichment). However,  there were no 

198 

differences in lactate and pyruvate enrichment between Clusters 3 and 4 (Fig 3H, Appendix 

199 

Fig S2D), nor were there differences in the enrichment of TCA cycle metabolites from glucose 

200 

(Appendix Fig  S2E).  These data,  therefore,  eliminate the role of glucose metabolism  in 

201 

explaining the higher TCA metabolite to pyruvate ratios in Cluster 4 cells compared to Cluster 

202 

3.  

203 

As such, we turned our attention to quantifying glutamine metabolism, as it is a major TCA 

204 

cycle  carbon source (Spinelli & Haigis, 2018), using  [U-

13

C]-glutamine  tracing.  Our first 

205 

observation was that more glutamine carbons were  incorporated in lactate, via either 

206 

phosphoenolpyruvate carboxykinase or malic enzymes (Mansouri

 et al

, 2017; Montal

 et al

207 

2015), in Cluster 4 cells than in Cluster 3 (Fig 3I). This increased efflux of glutamine from the 

208 

TCA cycle was also observed as greater enrichment of glutamine carbons into m+3 fructose 

209 

1,6-bisphosphate, and,  to a lesser extent,  phosphoenolpyruvate (Fig 3J), intermediates of 

210 

gluconeogenesis. Combined, these data show that cells in Cluster 4 possessed a more oxidative 

211 

phenotype that compensates for increased aerobic glycolysis with glutamine cataplerosis and 

212 

explains the increased lactate production and more abundant TCA cycle metabolites in cells of 

213 

Cluster 4,  compared to Cluster 3 that had greater glucose and glutamine consumption  and 

214 

glucose oxidation  (Fig 3K).  Furthermore,  these  new insights into glucose and glutamine 

215 

metabolism  and the discovery that some cells produce more  lactate  despite lower glucose 

216 

consumption support the new insights into high flux metabolic pathways from our pathway-

217 

centric ratio-based analyses.

 

 

218 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

14 

Differences in TCA cycle, lactate, and glutamine metabolism between Clusters 3 and 4 

219 

correlate with sensitivity to loss-of function. 

220 

We further validated the outcomes of our pathway-centric metabolite ratio analysis of targeted 

221 

metabolomic data (Fig 2) and functional studies (Fig 3) using 

in silico

 assessment of publicly 

222 

available datasets. Specifically, we used the pan-cancer DEMETER (Tsherniak

 et al

, 2017) and 

223 

Project Score (Behan

 et al

, 2019) loss-of-function screens, and the drug sensitivity PRISM 

224 

(Corsello

 et al

, 2020) and GDSC2 (Yang

 et al

, 2012) datasets and selected for gene or drug 

225 

targets within all KEGG metabolic pathways (Fig 4A). We then cross-referenced these large-

226 

scale cell line panels with cells that were members of Clusters 3 and 4 and focused our analyses 

227 

to  test the hypothesis that cells in Cluster 4 were more susceptible to depletion of genes 

228 

associated with OXPHOS, glutamine and lactate metabolism compared to Cluster 3 (Fig 4B). 

229 

In line with our hypothesis, Cluster 4 cells had greater sensitivity to genetic knockout  of 

230 

OXPHOS complexes I-V and glutaminase isoforms (Multiple unpaired t-tests, P<0.05; Fig 

231 

4C). We also observed a trend for greater sensitivity to deletion of succinate dehydrogenase 

232 

(SDHD; Student t-test, P=0.06) and lactate dehydrogenase (LDHD; Student t-test, P=0.08) in 

233 

cells in Cluster 4 (Appendix Fig S3A). We complemented our targeted assessment of these 

234 

datasets by determining the top 20 metabolic targets from all KEGG pathways that possessed 

235 

the greatest difference between Clusters 4 and 3. From this unbiased approach, we identified 

236 

members of OXPHOS, glutamine metabolism, TCA cycle, and pyruvate/lactate pathways in 

237 

this list (highlighted in yellow in Fig 4D, E). We also determined the top 20 list of the most 

238 

different targets between Cluster 4 and 3 when we narrowed the coverage to just central carbon 

239 

metabolism  from all KEGG pathways  (Appendix Fig S3B).  Consistent with our  other 

240 

observations, the list of most sensitive targets again was enriched with enzymes from OXPHOS 

241 

and TCA cycle pathways (Appendix Fig S3B).  Finally,  we  developed  a scoring system to 

242 

consolidate the top 20 most sensitive pathways in Cluster 4 from all databases, and again found 

243 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

15 

that the TCA cycle, OXPHOS, and glutamine metabolism were most vulnerable to genetic and 

244 

drug targeting compared to Cluster 3 (Appendix Fig S3C). Combined, we have demonstrated 

245 

that analyzing metabolomic data with a pathway-centric basis by using ratios identifies 

246 

distinctive metabolic profiles that are evident in functional measures and loss-of-function 

247 

screens.  

248 

249 

Figure 4: Validating pathway-centric metabolite ratio clusters and substrate 

250 

dependencies using loss-of-function screens and drug sensitivity databases. 

251 

A.

 

Schematic of 

in silico

  analysis of loss-of-function and drug sensitivity screens against KEGG 

252 

metabolic pathways and identified metabolic ratio phenotypes. 

253 

B.

 

Schematic illustrating the C4 phenotype of greater utilization of glucose and glutamine identified 

254 

by cluster analyses using metabolite ratios. Genes named in red were hypothesized to have greater 

255 

sensitivity to gene knockouts or inhibition in C4 compared to C3. 

256 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

16 

C.

 

Genes related to glucose and glutamine utilization phenotype of C4 with the greatest sensitivity to 

257 

gene knockouts. (Multiple unpaired t-tests, *p<0.05, mean ± standard error of the mean, n=2-6 cell 

258 

lines). 

259 

D.

 

Top 20 gene knockouts and associated KEGG pathways with the greatest fitness scores between 

260 

C4 and C3 in DEMETER and Project Score databases. Genes and pathways matching C4 

261 

vulnerability model are highlighted in yellow. 

262 

E.

 

Top 20 drugs and associated KEGG pathways with the greatest differential AUC z-scores between 

263 

C4 and C3 in PRISM and GDSC2 databases. Drugs and pathways matching C4 vulnerability model 

264 

are highlighted in yellow. 

265 

266 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

17 

DISCUSSION

 

267 

Cell metabolism is dynamic and differs depending on context. From the early observations of 

268 

Warburg (Warburg, 1925; Warburg & Minami, 1923) and the Coris (Cori & Cori, 1925), it is 

269 

now well accepted that cancer cells metabolize glucose differently from non-tumor tissue. 

270 

These differences are not a consequence of rewiring or transformation of the cascades of 

271 

biochemical reactions that form glycolysis and PPP but essentially from increased uptake of 

272 

extracellular glucose driving increased flux and production of end products, including lactate 

273 

(DeBerardinis & Chandel, 2020).  Alongside these well-documented changes in glucose 

274 

metabolism, there have been significant advances in the understanding of the interaction 

275 

between metabolic pathways (Sung

 et al

, 2023), outside the well-established convergence of 

276 

glucose, glutamine and fatty acid metabolism in the TCA cycle. A major challenge remains 

277 

how to infer mechanistic differences in metabolism based on metabolomics data alone, since 

278 

the latter may not correlate with pathway  activity  nor  flux.  Conventional dimensional 

279 

reduction, clustering, and over-presentation methodologies rely on coordinated changes to infer 

280 

co-dependency  or  co-regulation  (Amara

  et al

, 2022; Huang & Wang, 2022), but the 

281 

effectiveness of subsequent interpretations may be hinge on how the literature has delineated 

282 

metabolite memberships (Mahajan

 et al

, 2024), which are continuously honed over time. 

283 

Our first round of clustering, which was based on metabolite abundance of proliferating cells, 

284 

formed  groups that contained both epithelial and tumor-derived,  and  dismissed culturing 

285 

conditions, tissue type and origin, and mutation status of oncogenic drivers as potential factors 

286 

influencing cell metabolism. However, we  failed to derive any  metabolic  signatures  or 

287 

hypotheses  that could be evaluated  with functional assessment.  Consequently,  we  took  a 

288 

physiologically-based approach and transformed our metabolomic data into pathway-centric 

289 

ratios and  explored the relationships between  reactant and product metabolites of central 

290 

carbon and amino acid pathways. The approach draws upon thermodynamic principles in terms 

291 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

18 

of reaction equilibrium and Gibbs energy (Park

 et al

, 2016), and in practice, there is robust 

292 

evidence for coordinated changes among proximal and hub metabolites (Martínez-Reyes & 

293 

Chandel, 2020). Using metabolite ratios, we identified five clusters of cell lines, two of which 

294 

(Cluster 3 and 4) we surmised to differ in TCA cycle activity based on the levels of TCA cycle 

295 

metabolites relative to pyruvate. Indeed, the ensuing functional assay of glucose and glutamine 

296 

metabolism verified pathway activity differences between Cluster 3 and 4, with Cluster 4’s 

297 

elevated TCA cycle metabolites showing concordance with higher lactate production and the 

298 

shift from glycolysis to an increased glutamine oxidation and cataplerosis. This work highlights 

299 

the value  of  pathway-centric  ratio-based data transformation in  distinguishing metabolic 

300 

pathway  activity  in a pan-cancer cell line panel  and,  therefore,  supports the concept of a 

301 

physiological-based approach to analyze metabolomic data. 

302 

Many tumors are reliant on glutamine as a critical carbon and nitrogen source, with glutaminase 

303 

inhibition shown to be an effective therapy in several cancer types, such as triple-negative 

304 

breast cancer (Gross

 et al

, 2014), non-small cell lung cancer (van den Heuvel

 et al

, 2012), and 

305 

head and neck cancer (Wicker

 et al

, 2021). Our findings showed that Cluster 4 cells had higher 

306 

OXPHOS levels yet consumed less glucose and glutamine; these cells appear more carbon 

307 

efficient. The relatively more plentiful TCA cycle metabolites may sustain higher TCA cycle 

308 

fluxes, which are tightly coupled to OXPHOS, and  buffer  critical  anabolic and signaling 

309 

functions  (Martínez-Reyes & Chandel, 2020).  Glutamine’s proximity means oxidizing 

310 

glutamine repletes TCA cycle metabolites more directly than glucose (Quek

 et al

, 2022), but 

311 

the displacement of glucose oxidation further entrenched the aerobic glycolysis phenotype as 

312 

seen  in Cluster 4 cells.  Additionally, glutamine cataplerosis and the contribution  of  PEP 

313 

carboxykinase  to  gluconeogenesis,  converting  oxaloacetate to PEP,  augment  the  supply of 

314 

biomass precursors, which have been documented in several cancer types, including liver (Liu

 

315 

et al

, 2018) and lung (Vincent

 et al

, 2015). For example, glutamine-derived lactate production 

316 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

19 

via glutaminolysis in glioblastoma cells helps produce NADPH and support fatty acid synthesis 

317 

(DeBerardinis

  et al

, 2007).  Overall, we speculate that the  increased glutamine utilization 

318 

among Cluster 4 cells may confer greater fitness to support proliferation and survival. 

319 

Excitingly, our assertion of elevated OXPHOS and enhanced glutamine utilization in Cluster 4 

320 

matched data mining results derived from drug sensitivity (Corsello

 et al.

, 2020; Yang

 et al.

321 

2012) and loss-of-function screens (Behan

 et al.

, 2019; Tsherniak

 et al.

, 2017). Among the top 

322 

20 loss-of-function screens, Cluster 4 cells were most sensitive to targeting the TCA cycle, 

323 

OXPHOS, glycolysis, and glutamate metabolism pathways, compared to Cluster 3 cells. 

324 

Namely, we found Cluster 4 cells significantly more sensitive to glutaminase gene knockout 

325 

and inhibitors. These findings highlight the potential of a physiological pathway-centric 

326 

approach to translating metabolite signatures into effective strategies for identifying druggable 

327 

vulnerabilities in glucose and glutamine metabolism. 

328 

A key limitation of our approach is coverage. Our targeted LC-MS method covers central 

329 

carbon metabolism, and thus we have focused on the TCA cycle as it is a convergent point for 

330 

glucose and glutamine utilization; however, whether these relationships are consistent for other 

331 

TCA cycle substrates, such as branched-chain amino acids and fatty acids (Neinast

 et al

, 2019; 

332 

Schoors

 et al

, 2015) remains to be determined. Another major lesson from our approach was 

333 

that the most insightful outcome of our clustering analysis came from using a hub metabolite 

334 

(e.g., pyruvate) as the denominator rather than a starting substrate (i.e., glucose, glutamine, 

335 

serine).  Since we only included one hub metabolite in our pathway cluster analysis,  it  is 

336 

conceivable that investigating other metabolic hubs not covered in our targeted approach, such 

337 

as NAD

+

 (Benedetti

 et al.

, 2023), could identify other distinctive signatures and targetable 

338 

vulnerabilities. Perhaps the abundance of hub metabolites, where multiple pathways converge, 

339 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

20 

are less prone to isolated variation or  are  tightly regulated  and thus more effective at 

340 

distinguishing metabolic changes in a ratio approach. 

341 

A major motivation for the current study was to identify common metabolic signatures that 

342 

arise from various genomic bases that can form the foundation for a simpler therapeutic 

343 

approach across cancer types. The outcomes of this study have, in part, provided evidence that 

344 

this  may be achievable.  Our  results highlight the potential of using  physiologically-based, 

345 

pathway-centric metabolite ratios to gain insights into the convergent or recurrent pathway 

346 

mechanisms within subsets of diverse cancer types and identify targetable vulnerabilities. 

347 

Combined with existing large-scale metabolomic datasets, our approach may lay the 

348 

foundation to accelerate the ongoing efforts to profile cancer metabolism for future therapeutic 

349 

advances and repurposing metabolic targeting-based therapeutics in a pan-cancer setting. 

 

350 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

21 

MATERIALS AND METHODS 

351 

Reagents and Tools Table

 

352 

Reagent/Resource  Reference or Source  

Identifier or Catalog Number 

Experimental 

Models  

 

 

MCF10A

 

ATCC

 

ATCC CRL-10317 RRID: CVCL_0598

 

MDA-MB-231

 

ATCC

 

ATCC HTB-26 RRID: CVCL_0062

 

BT474

 

ATCC

 

ATCC HTB-20 RRID: CVCL_0179

 

MDA-MB-468

 

ATCC

 

ATCC HTB-132

 

MCF7

 

ATCC

 

ATCC HTB-22

 

BT20

 

ATCC

 

ATCC HTB-19

 

MDA-MB-134

 

ATCC

 

ATCC HTB-23

 

PNT1

 

ECACC

 

ECACC 95012614 RRID: CVCL_2163

 

PNT2

 

Prof. Lisa Butler, SAHMRI

 

(Nassar

 et al

, 2020)

 

C4-2B

 

ATCC

 

ATCC CRL-3315

 

PC-3

 

ATCC

 

ATCC CRL-1435

 

22Rv1

 

ATCC

 

ATCC CRL-2505 RRID: CVCL_1045

 

LNCaP

 

ATCC

 

ATCC CRL-1740 RRID: CVCL_1379

 

DU145

 

A/Prof. Luke Selth, Flinders University

 

ATCC HTB-81

 

CWR-AD1

 

A/Prof. Luke Selth, Flinders University

 

(Li

 et al

, 2013; Nyquist

 et al

, 2013)

 

CWR-D567

 

A/Prof. Luke Selth, Flinders University

 

(Nyquist

 et al.

, 2013)

 

VCAP

 

Prof. Lisa Butler, SAHMRI

 

(Nassar

 et al.

, 2020)

 

V16D

 

Prof. Lisa Butler, SAHMRI

 

(Nassar

 et al.

, 2020)

 

MR49F

 

Prof. Lisa Butler, SAHMRI

 

(Bishop

 et al

, 2017)

 

MR42D

 

Prof. Lisa Butler, SAHMRI

 

(Bishop

 et al.

, 2017)

 

AML12

 

Prof. Rob Parton, University of 

Queensland

 

(Nagarajan

 et al

, 2019)

 

PH5CH8

 

A/Prof. Susan McLennan, University of 

Sydney

 

(Nagarajan

 et al.

, 2019)

 

HEPG2

 

A/Prof. Susan McLennan, University of 

Sydney

 

(Nagarajan

 et al.

, 2019)

 

HUH7

 

Prof. Mark Gorrell, University of Sydney

 

RRID: CVCL_0336

 

SKHEP1

 

Prof. Mark Gorrell, University of Sydney

 

RRID: CVCL_0525

 

HEPA1-6

 

Prof. Mark Gorrell, University of Sydney

 

RRID: CVCL_0327

 

HUE-T

 

Dr Frances Byrne, UNSW 

 

(Byrne

 et al

, 2014)

 

MAD11

 

Dr Frances Byrne, UNSW 

 

(Byrne

 et al.

, 2014)

 

Ishikawa

 

Prof. Kyle Hoehn, UNSW

 

RRID: CVCL_2529

 

MFE296

 

Prof. Kyle Hoehn, UNSW

 

RRID: CVCL_1406

 

MFE319

 

Prof. Kyle Hoehn, UNSW

 

RRID: CVCL_2112

 

AN3CA

 

Prof. Kyle Hoehn, UNSW

 

RRID: CVCL_0028

 

RL952

 

Prof. Kyle Hoehn, UNSW

 

RRID: CVCL_0505

 

KLE

 

Prof. Kyle Hoehn, UNSW

 

RRID: CVCL_1329

 

HEC1A

 

Prof. Kyle Hoehn, UNSW

 

RRID: CVCL_0293

 

U251

 

Prof. Lenka Munoz, University of 

Sydney

 

RRID: CVCL_0021

 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

22 

U87

 

Prof. Lenka Munoz, University of 

Sydney

 

RRID: CVCL_3429

 

HPDE

 

A/Prof Thomas Grewal, University of 

Sydney

 

RRID: CVCL_4376

 

PANC1

 

A/Prof Thomas Grewal, University of 

Sydney

 

RRID: CVCL_0480

 

MIAPACA-2

 

A/Prof Thomas Grewal, University of 

Sydney

 

RRID: CVCL_0428

 

BXPC3

 

A/Prof Thomas Grewal, University of 

Sydney

 

RRID: CVCL_0186

 

ASPC1

 

A/Prof Thomas Grewal, University of 

Sydney

 

RRID: CVCL_0152

 

A2780

 

A/Prof. David Croucher, Garvan Institute

 

RRID: CVCL_0134

 

OVCAR3

 

A/Prof. David Croucher, Garvan Institute

 

RRID: CVCL_0465

 

SKOV3

 

A/Prof. David Croucher, Garvan Institute

 

RRID: CVCL_0532

 

A375

 

Dr. Lorey Smith, Peter MacCallum 

Cancer Centre

 

ATCC CRL-1619 RRID: CVCL_0132

 

HT144

 

Dr. Lorey Smith, Peter MacCallum 

Cancer Centre

 

ATCC HTB-63 RRID: CVCL_0318

 

WM266.4

 

Dr. Lorey Smith, Peter MacCallum 

Cancer Centre

 

ATCC CRL-1676 RRID: CVCL_2765

 

DO4-M1

 

Dr. Lorey Smith, Peter MacCallum 

Cancer Centre

 

(Parmenter

 et al

, 2014)

 

A549

 

Dr. Lorey Smith, Peter MacCallum 

Cancer Centre

 

(Chen

 et al

, 2019)

 

NCI-H226

 

Dr. Lorey Smith, Peter MacCallum 

Cancer Centre

 

RRID: CVCL_1544

 

Detroit562

 

A/Prof Thomas Grewal, University of 

Sydney

 

RRID: CVCL_1171

 

SCC4

 

A/Prof Thomas Grewal, University of 

Sydney

 

RRID: CVCL_1684

 

HT29

 

A/Prof. Kellie Charles, University of 

Sydney

 

RRID: CVCL_A8EZ

 

HCT116

 

A/Prof. Kellie Charles, University of 

Sydney

 

RRID: CVCL_0291

 

SW-48

 

A/Prof. Kellie Charles, University of 

Sydney

 

RRID: CVCL_1724

 

SW-1417

 

A/Prof. Kellie Charles, University of 

Sydney

 

RRID: CVCL_1717

 

Chemicals, 

Enzymes, and 

other reagents  

 

 

Enzalutamide 

MDV3100

 

Selleckchem 

Cat#S1250 

D-Glucose 

Sigma-Aldrich 

Cat#273053 

L-Glutamine 

Gibco 

Cat#25030081 

Fatty acid free BSA 

Bovogen 

Cat#BSAS0.10 

D-Glucose (U-13C6, 

99%) 

Cambridge Isotope Laboratories, Inc. 

Cat#CLM-1396 

L-Glutamine (U-

13C5, 99%) 

Cambridge Isotope Laboratories, Inc. 

Cat#CLM-1822-H 

Software  

 

 

GraphPad Prism V9 

GraphPad Software 

https://www.graphpad.com/

 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

23 

MATLAB 

Mathworks 

https://au.mathworks.com/products/matlab.html

 

MSConvert 

N/A 

(Chambers

 et al

, 2012) 

MSDial 

Riken 

http://prime.psc.riken.jp/compms/msdial/main.html

 

Biorender 

Biorender 

https://biorender.com/

 

Other 

 

 

Resipher 

Lucid Scientific 

https://lucidsci.com/

 

Incucyte-SX5 

Sartorius 

https://www.sartorius.com/

 

Cell lines and culture conditions 

353 

A total of 57 adherent cell lines (8 normal and 49 tumor) spanning 11 cancer types were used 

354 

in this study. Cell lines obtained from vendors or that were kindly provided by academic labs, 

355 

overlapped with major cell line resources such as the Cancer Cell Line Encyclopedia (CCLE) 

356 

and National Cancer Institute 60 panel (NCI60) (Appendix table 1). Mutational status of 

357 

common oncogenes was characterized by cross-referencing the Cellosaurus database, 

358 

COSMIC database, and Depmap portal. Culturing media were supplemented with 10% fetal 

359 

bovine serum (Cytiva Hyclone) and 1% penicillin/streptomycin (Gibco) unless stated 

360 

otherwise (Appendix table 1). Cells were incubated at 37°C and 5% CO

2

. The full panel of 

361 

cells were generated across 6 batches over a period of 3 years due to COVID restrictions and 

362 

included overlapping cell lines to correct for batch effects. 

363 

Metabolomics experiments 

364 

Cells were seeded in triplicate in 6-well plates at a density of 5x10

5

 cells/well in 2 mL of media. 

365 

After 24 hours, the media was removed, and cells were washed once with 2 mL ice-cold 0.9% 

366 

w/v NaCl. Cells were then scraped with 300  mL of extraction buffer, EB, (1:1 LC/MS 

367 

methanol:water (Optima) + 0.1x internal standards comprised of non-endogenous polar 

368 

metabolites (2-morpholinoethanesulfonic acid, D-camphor-10-sulfonic  acid,  and deuterated 

369 

thymidine) and transferred to a 1.5 mL microcentrifuge tube. A further 300 mL of EB was 

370 

added to the well and combined in the tube. 600 mL Chloroform (Honeywell) was added before 

371 

vortexing and incubating on ice for 10 minutes. Tubes were vortexed briefly and centrifuged 

372 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

24 

at 15,000 x 

g

 for 10 minutes at 4°C. The aqueous layer was collected and dried without heat, 

373 

using a Savant SpeedVac (Thermo Fisher). Dried samples were resuspended in 40 mL Amide 

374 

buffer A (20  mM ammonium acetate, 20  mM ammonium hydroxide, 95:5 HPLC H

2

O: 

375 

Acetonitrile (v/v)) and vortexed and centrifuged at 15,000 x 

g

 for 5 minutes at 4°C. 20 mL of 

376 

supernatant was transferred to HPLC vials containing 20 mL acetonitrile for LC-MS analysis 

377 

of amino acids and glutamine metabolites. The remaining 20 mL of resuspended sample was 

378 

transferred to HPLC vials containing 20 mL LC-MS H

2

O for LCMS analysis of glycolytic, 

379 

pentose phosphate pathway,  and TCA cycle metabolites. Amino acids and glutamine 

380 

metabolites were measured using the Vanquish-TSQ Altis (Thermo) LC-MS/MS system. 

381 

Analyte separation was achieved using a Poroshell 120 HILIC-Z Column (2.1x150 mm, 2.7 

382 

mm) (Agilent) at ambient temperature. The pair of buffers used were Amide buffer A and 100% 

383 

acetonitrile (Buffer B), flowed at 200 mL/min; injection volume of 5 mL. Glycolytic, PPP and 

384 

TCA cycle metabolites were measured using 1260 Infinity (Agilent)-QTRAP6500+ (AB 

385 

Sciex) LC-MS/MS system. Analyte separation was achieved using a Synergi 2.5 mm Hydro-

386 

RP 100A LC Column (100x2 mm) at ambient temperature. The pair of buffers used were 95:5 

387 

(v/v) water:acetonitrile containing 10 mM tributylamine and 15 mM acetic acid (Buffer A) and 

388 

100% acetonitrile (Buffer B), flowed at 200 mL/min; injection volume of 5 mL. Raw data from 

389 

both LC-MS/MS systems were extracted using MSConvert (Chambers

 et al.

, 2012) and in-

390 

house MATLAB scripts. Concentrations of metabolites were calculated against a standard 

391 

curve of polar and amino acid metabolite standards similarly extracted as above. Log10 

392 

normalization was performed on the metabolite concentration data. 

393 

Metabolomics batch correction 

394 

Cell line samples were quantified over 6 batches during the experiment including overlapping 

395 

cell lines across each batch. To eliminate potential batch effects, we applied the normalization 

396 

method: Removing Unwanted Variation-III (Molania

 et al

, 2019). We set k, the number of 

397 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

25 

unwanted factors, to 9. The cell lines that were measured across multiple runs were used as 

398 

replicates for the batch correction algorithm and to assess the quality of the batch correction 

399 

output. 

 

400 

Metabolomics clustering analysis   

401 

Clustering was performed on the batch-corrected matrix using K-means algorithms with “1 - 

402 

Pearson correlation”  as the distance matrix  (Gu

  et al

, 2016)  implemented  in the 

403 

ComplexHeatmap package  (k  =  5).  We  visualized the results as a heatmap using the 

404 

ComplexHeatmap package.  The clustering procedure was repeated 1000 times and the 

405 

consensus was taken to ensure a more robust clustering result. The clustering strategy was 

406 

applied to both the original batch-corrected matrix and the ratio-transformed matrix. We 

407 

visually assess whether the obtained clustering was not influenced by potential confounding 

408 

factors, such as culturing conditions and common oncogenic gene mutations and tissue type. 

409 

This is achieved by adding a color-coded legend on culturing conditions and mutational 

410 

information to the clustering heatmap and demonstrate that no patterns exist.  

411 

The original batch-corrected matrix was subset to targeted metabolites from several key 

412 

metabolic pathways including the TCA cycle, pentose phosphate pathway, glycolysis, amino 

413 

acid metabolism, and glutamine metabolism, followed by clustering analysis. For the ratio-

414 

transformed matrix, batch-corrected abundance ratios were calculated between a precursor 

415 

metabolite for each pathway (used as the denominator) and the remaining pathway metabolites. 

416 

The corresponding precursor (denominator) metabolites were pyruvate for the TCA cycle, 

417 

glucose for PPP and glycolysis, and glutamine for the glutamine metabolism pathway. For 

418 

amino acid pathways, serine, proline, and methionine were used as the precursor metabolites. 

419 

The clustering structure determined from the processes above were also used to visualize the 

420 

oncogene mutation status, tissue type, cancer type, tissue origin, and culturing media type of 

421 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

26 

the cell lines using a heatmap and inspect the relationship of these variables with the determined 

422 

clusters. 

423 

U-

13

C stable isotope tracing  

424 

Cells were seeded in triplicate in 6-well plates at a density of 5x10

5

 cells/well in 2 mL of media. 

425 

After 24 hours wells were washed with warm PBS and media replaced with 600 mL of DMEM 

426 

no glucose, no glutamine media supplemented with 2% (wt./vol) FA-free BSA, and 5 mM 

427 

glucose and 1 mM glutamine, replaced with their respective U-

13

C forms. Cells were incubated 

428 

in U-

13

C containing medium for 6 hours. Samples were extracted and measured using the 

429 

Vanquish-TSQ Altis and Agilent-QTRAP6500+. 

430 

Extracellular substrate experiments 

431 

Cells were seeded in triplicate in 6-well plates at a density of 5x10

5

 cells/well in 2 mL of media. 

432 

After 24 hours wells were washed with warm PBS and media replaced with 1 mL of DMEM 

433 

no glucose, no glutamine media supplemented with 5 mM glucose, 1 mM glutamine and 150 

434 

mM palmitate. 100 mL of extracellular media were collected from wells at 3, 6, 12, 24 hour 

435 

timepoints. Media samples were centrifuged at 16,000  x 

g

  for 5  minutes  at 4°C and the 

436 

supernatant collected for subsequent extraction and LC-MS analysis. 

437 

To extract media samples for LC-MS, 20 mL of supernatant media was first diluted with 80 

438 

mL water and vortexed, and then 10mL of the diluted media was transferred to 90  mL of 

439 

extraction buffer containing 1:1 (v/v) acetonitrile and methanol + 1x internal standards (non-

440 

endogenous standards) at -30°C. The mixture was centrifuged at 12,000 x 

g

 for 5 minutes at 

441 

4

°

C and transferred into HPLC vials for LC-MS analysis measured using the Vanquish-TSQ 

442 

Altis. 

443 

Oxygen consumption rate 

444 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

27 

Cells were seeded in 96-well plates (Nunc) in 100 mL basal medium. Oxygen consumption 

445 

rates were continuously measured using Resipher (Lucid Scientific) at 37°C, 10% CO

2

 as per 

446 

manufacturer instructions over 48 hours, starting 24 hours post-seeding. Media was replenished 

447 

at 24 hours. Cell-free wells contained 200 mL of PBS to avoid evaporation. To account for 

448 

differences in cell growth over 48 hours, parallel plates were similarly cultured, and media 

449 

replenished at 24 hours for cell confluency measured using IncuCyte-SX5 (Sartorius). 

450 

Analysis of drug and CRISPR databases 

451 

Drug sensitivity area under the curve (AUC) data were downloaded from the PRISM (Corsello

 

452 

et al.

, 2020)  and GDSC2  (Release 8.4, July 2022)  (Yang

  et al.

, 2012)  databases. Loss-of-

453 

function fitness score data were downloaded from the DEMETER (Tsherniak

 et al.

, 2017) and 

454 

Project Score  (July 2021) (Behan

  et al.

, 2019)  databases. First,  cell lines were filtered by 

455 

overlapping cell lines within our panel, and then inhibitor or loss-of-function gene targets were 

456 

filtered by KEGG metabolic pathway genes. We then performed a differential expression 

457 

analysis on the drug response of the cell lines belonging to clusters of interest, specifically the 

458 

response of Cluster 3 cell lines versus Cluster 4 cell lines. The top 20 drugs or gene targets with 

459 

the greatest differential response between Clusters 3 and 4 was identified. 

 

460 

Statistical analysis for 

in vitro

 and database analysis 

461 

For all 

13

C-tracing, extracellular, and oxygen consumption experiments, at least 3 technical 

462 

replicates and 3 independent biological replicates were used for each sample group. Descriptive 

463 

data summary in Figures 3 and 4 were presented as mean 

±

 

standard error of the mean (SEM), 

464 

mean 

±

 

standard deviation (SD), or mean 

±

  

min to max values, as indicated in each of the figure 

465 

legends. We determine statistically significant differences between cell clusters 3 and 4 in 

13

C-

466 

tracing, extracellular, and oxygen consumption experiments and loss-of-function analysis by 

467 

performing unpaired Student’s t-test. We assessed the differences between clusters 3 and 4 of 

468 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

28 

oxidative phosphorylation gene loss-of-function by multiple unpaired t-tests (implemented in 

469 

Prism GraphPad V9). Statistical significance is indicated in all figures by the following 

470 

annotations *p <0.05 and not statistically different otherwise. The R software and packages 

471 

was used for clustering methods and heatmaps as reported in previous sections. Schematic 

472 

diagrams were created with Biorender.com.

 

 

473 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

29 

 

474 

Appendix Figure S1: Pathway-centric metabolite ratios  of all targeted metabolic 

475 

pathways. 

476 

A.

 

Heatmap of scaled metabolite ratios by pathways covered in the targeted metabolomics approach. 

477 

Ratios calculated for all metabolites of a specific pathway against a precursor metabolite.  

478 

B.

 

Clusters of cell lines from (A) appended with color coded legends for mutant status of common 

479 

oncogenic drivers, culturing media conditions and tissue origins.  

 

480 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

30 

 

481 

482 

Appendix Figure S2: Substrate preferences for cell line clusters identified by TCA cycle 

483 

ratios. 

484 

A.

 

Schematic of the lactate dehydrogenase catalyzed  reaction.  NAD+ to NADH ratio in cells of 

485 

Clusters 4 and 3 (Unpaired student t-test, ns p>0.05, error min to max values). 

486 

B.

 

Lactate  production  and glucose and glutamine consumption over 24 hours (C4 n=8, C3 n-6, 3 

487 

biological replicates and 3 technical replicates per cell line, mean 

±

 standard error of the mean). 

488 

C.

 

Oxygen consumption rates (OCR) measured over 48 hours, normalized to % confluency. Media 

489 

changed at 24 hours (left). OCR measurement for cell lines at 48 hours (right) (C4 n=6, C3 n-5, 3 

490 

biological replicates and 4 technical replicates per cell line). 

491 

D.

 

Fractional contribution of [U-

13

C]-glucose to intracellular pyruvate (C4 n=3, C3 n=4, 3 biological 

492 

replicates and 3 technical replicates per cell line, mean 

±

 standard error of the mean). 

493 

E.

 

Fractional contribution of [U-

13

C]-glucose to TCA metabolites citrate, oxoglutarate, succinate and 

494 

malate (C4 n=3, C3 n=4, 3 biological replicates and 3 technical replicates per cell line, mean 

±

 

495 

standard error of the mean).

 

 

496 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

31 

497 

Appendix Figure S3: Loss of function and drug database screen validation of pathway-

498 

centric metabolite ratio clusters. 

499 

A.

 

Genes related to the glucose and glutamine utilization phenotype of C4 with trends of greater 

500 

sensitivity to gene knockouts. (Unpaired student t-test, ns p>0.05, mean 

±

 standard error of the 

501 

mean, n=2-6). 

502 

B.

 

Top 20 gene knockouts and associated KEGG pathways with the greatest fitness scores between 

503 

C4 and C3 in DEMETER and Project Score databases from glycolysis, TCA cycle, pyruvate 

504 

metabolism, glycolysis/gluconeogenesis, and alanine, aspartate, and glutamate metabolism 

505 

pathways.  

506 

C.

 

Metabolic pathways associated with the top 20 drug and gene knockout sensitives for Cluster 4 

507 

for each database. Drugs and pathways matching C4 vulnerability model (yellow) are highlighted.

 

508 

 

 

509 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

32 

Acknowledgements 

510 

N.T.S. is supported by the Australian Rotary Health/Rotary Club of Blacktown City ‘Mel Grey’ 

511 

PhD scholarship. A.J.H. is supported by a Robinson Fellowship. This work was supported by 

512 

funding from The University of Sydney. We thank the Sydney Mass Spectrometry facility for 

513 

access to LC-MS instruments; and all collaborators who kindly donated cell lines. 

514 

Author contributions 

515 

Nancy T Santiappillai:

  Project administration, formal analysis, investigation, validation, 

516 

visualization, writing – original draft, writing -review & editing. 

Yue Cao:

 Formal analysis, 

517 

methodology, software, validation, visualization, writing -review & editing. 

Mariam  F 

518 

Hakeem-Sanni:

  Investigation. 

Jean Yang: 

Methodology, supervision, writing -review & 

519 

editing. 

Lake-Ee Quek: 

Conceptualization, methodology, project administration, software, 

520 

supervision, writing –  review & editing. 

Andrew J Hoy:

  Conceptualization, funding 

521 

acquisition, project administration, resources, supervision, writing – review & editing. 

522 

Disclosure and competing interests statement 

523 

The authors declare that they have no conflict of interest. 

 

524 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

33 

REFERENCES

 

525 

Altea-Manzano P, Cuadros AM, Broadfield LA, Fendt SM (2020) Nutrient metabolism and 

526 

cancer in the in vivo context: a metabolic game of give and take. 

EMBO Rep

 21: e50635 

527 

Amara A, Frainay C, Jourdan F, Naake T, Neumann S, Novoa-del-Toro EM, Salek RM, Salzer 

528 

L, Scharfenberg S, Witting M (2022) Networks and Graphs Discovery in Metabolomics Data 

529 

Analysis and Interpretation. 

Frontiers in Molecular Biosciences

 9 

530 

Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, Santos R, Rao Y, Sassi F, 

531 

Pinnelli M

 et al

 (2019) Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. 

532 

Nature

 568: 511-516 

533 

Benedetti E, Liu EM, Tang C, Kuo F, Buyukozkan M, Park T, Park J, Correa F, Hakimi AA, 

534 

Intlekofer AM

 et al

 (2023) A multimodal atlas of tumour metabolism reveals the architecture 

535 

of gene–metabolite covariation. 

Nat Metab

 5: 1029-1044 

536 

Bishop JL, Thaper D, Vahid S, Davies A, Ketola K, Kuruma H, Jama R, Nip KM, Angeles A, 

537 

Johnson F

  et al

  (2017) The Master Neural Transcription Factor BRN2 Is an Androgen 

538 

Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer. 

Cancer 

539 

Discov

 7: 54-71 

540 

Byrne FL, Poon IKH, Modesitt SC, Tomsig JL, Chow JDY, Healy ME, Baker WD, Atkins KA, 

541 

Lancaster JM, Marchion DC

 et al

 (2014) Metabolic Vulnerabilities in Endometrial Cancer. 

542 

Cancer Res

 74: 5832-5845 

543 

Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. 

Nat Rev Cancer

 

544 

11: 85-95 

545 

Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer 

546 

B, Pratt B, Egertson J

  et al

  (2012) A cross-platform toolkit for mass spectrometry and 

547 

proteomics. 

Nat Biotechnol

 30: 918-920 

548 

Chen P-H, Cai L, Huffman K, Yang C, Kim J, Faubert B, Boroughs L, Ko B, Sudderth J, 

549 

McMillan EA

 et al

 (2019) Metabolic Diversity in Human Non-Small Cell Lung Cancer Cells. 

550 

Mol Cell

 76: 838-851.e835 

551 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

34 

Cherkaoui S, Durot S, Bradley J, Critchlow S, Dubuis S, Masiero MM, Wegmann R, Snijder 

552 

B, Othman A, Bendtsen C

 et al

 (2022) A functional analysis of 180 cancer cell lines reveals 

553 

conserved intrinsic metabolic programs. 

Mol Syst Biol

 18 

554 

Cori CF, Cori GT (1925) the carbohydrate metabolism of tumors: ii. Changes in the sugar, 

555 

lactic acid, and co2-combining power of blood passing through a tumor. 

J Biol Chem

 65: 397-

556 

405 

557 

Corsello SM, Nagari RT, Spangler RD, Rossen J, Kocak M, Bryan JG, Humeidi R, Peck D, 

558 

Wu X, Tang AA

 et al

 (2020) Discovering the anti-cancer potential of non-oncology drugs by 

559 

systematic viability profiling. 

Nat Cancer

 1: 235-248 

560 

DeBerardinis RJ, Chandel NS (2020) We need to talk about the Warburg effect. 

Nat Metab

 2: 

561 

127-129 

562 

DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) 

563 

Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds 

564 

the requirement for protein and nucleotide synthesis. 

Proc Natl Acad Sci U S A

 104: 19345-

565 

19350 

566 

Fendt SM, Frezza C, Erez A (2020) Targeting Metabolic Plasticity and Flexibility Dynamics 

567 

for Cancer Therapy. 

Cancer Discov

 10: 1797-1807 

568 

Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, Janes JR, Laidig GJ, 

569 

Lewis ER, Li J

 et al

 (2014) Antitumor Activity of the Glutaminase Inhibitor CB-839 in Triple-

570 

Negative Breast Cancer. 

Mol Cancer Ther

 13: 890-901 

571 

Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in 

572 

multidimensional genomic data. 

Bioinformatics

 32: 2847-2849 

573 

Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat 

574 

L

 et al

 (2016) Metabolic Heterogeneity in Human Lung Tumors. 

Cell

 164: 681-694 

575 

Huang Z, Wang C (2022) A Review on Differential Abundance Analysis Methods for Mass 

576 

Spectrometry-Based Metabolomic Data. 

Metabolites

 12 

577 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

35 

Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, 

578 

Clish CB, Mootha VK (2012) Metabolite profiling identifies a key role for glycine in rapid 

579 

cancer cell proliferation. 

Science

 336: 1040-1044 

580 

Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH, Zhang J, Signoretti S, Loda M, Roberts TM

 et 

581 

al

  (2008) Essential roles of PI(3)K–p110

β 

in cell growth, metabolism and tumorigenesis. 

582 

Nature

 454: 776-779 

583 

Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer 

584 

growth. 

Genes Dev

 23: 537-548 

585 

Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, Vander Heiden MG, 

586 

Miller G, Drebin JA, Bar-Sagi D

 et al

 (2015) Human pancreatic cancer tumors are nutrient 

587 

poor and tumor cells actively scavenge extracellular protein. 

Cancer Res

 75: 544-553 

588 

Li H, Ning S, Ghandi M, Kryukov GV, Gopal S, Deik A, Souza A, Pierce K, Keskula P, 

589 

Hernandez D

 et al

 (2019) The landscape of cancer cell line metabolism. 

Nat Med

 25: 850-860 

590 

Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM (2013) Androgen receptor 

591 

splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. 

592 

Cancer Res

 73: 483-489 

593 

Liu M-X, Jin L, Sun S-J, Liu P, Feng X, Cheng Z-L, Liu W-R, Guan K-L, Shi Y-H, Yuan H-X

 

594 

et al

 (2018) Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress 

595 

and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. 

Oncogene

 37: 

596 

1637-1653 

597 

Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, Ferreira R, Naamati A, Ali A, 

598 

Lewis CA

 et al

 (2021) Increased demand for NAD+ relative to ATP drives aerobic glycolysis. 

599 

Mol Cell

 81: 691-707.e696 

600 

Mahajan P, Fiehn O, Barupal D (2024) IDSL.GOA: gene ontology analysis for interpreting 

601 

metabolomic datasets. 

Sci Rep

 14: 1299 

602 

Mansouri S, Shahriari A, Kalantar H, Moini Zanjani T, Haghi Karamallah M (2017) Role of 

603 

malate dehydrogenase in facilitating lactate dehydrogenase to support the glycolysis pathway 

604 

in tumors. 

Biomed Rep

 6: 463-467 

605 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

36 

Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control 

606 

physiology and disease. 

Nat Commun

 11 

607 

Molania R, Gagnon-Bartsch JA, Dobrovic A, Speed TP (2019) A new normalization for 

608 

Nanostring nCounter gene expression data. 

Nucleic Acids Res

 47: 6073-6083 

609 

Montal ED, Dewi R, Bhalla K, Ou L, Hwang BJ, Ropell AE, Gordon C, Liu WJ, DeBerardinis 

610 

RJ, Sudderth J

 et al

 (2015) PEPCK Coordinates the Regulation of Central Carbon Metabolism 

611 

to Promote Cancer Cell Growth. 

Mol Cell

 60: 571-583 

612 

Mullen NJ, Singh PK (2023) Nucleotide metabolism: a pan-cancer metabolic dependency. 

Nat 

613 

Rev Cancer

 23: 275-294 

614 

Nagarajan SR, Paul-Heng M, Krycer JR, Fazakerley DJ, Sharland AF, Hoy AJ (2019) Lipid 

615 

and glucose metabolism in hepatocyte cell lines and primary mouse hepatocytes: a 

616 

comprehensive resource for in vitro studies of hepatic metabolism. 

Am J Physiol Endocrinol 

617 

Metab

 316: E578-E589 

618 

Nassar ZD, Mah CY, Dehairs J, Burvenich IJ, Irani S, Centenera MM, Helm M, Shrestha RK, 

619 

Moldovan M, Don AS

 et al

 (2020) Human DECR1 is an androgen-repressed survival factor 

620 

that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. 

Elife

 9 

621 

Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ, Li X, Zhan L, White E, 

622 

Anthony TG

  et al

  (2019) Quantitative Analysis of the Whole-Body Metabolic Fate of 

623 

Branched-Chain Amino Acids. 

Cell Metab

 29: 417-429.e414 

624 

Nyquist MD, Li Y, Hwang TH, Manlove LS, Vessella RL, Silverstein KAT, Voytas DF, Dehm 

625 

SM (2013) TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of 

626 

androgen receptor in prostate cancer. 

Proc Natl Acad Sci U S A

 110: 17492-17497 

627 

Oermann EK, Wu J, Guan KL, Xiong Y (2012) Alterations of metabolic genes and metabolites 

628 

in cancer. 

Semin Cell Dev Biol

 23: 370-380 

629 

Ortmayr K, Dubuis S, Zampieri M (2019) Metabolic profiling of cancer cells reveals genome-

630 

wide crosstalk between transcriptional regulators and metabolism. 

Nat Commun

 10 

631 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

37 

Park JO, Rubin SA, Xu YF, Amador-Noguez D, Fan J, Shlomi T, Rabinowitz JD (2016) 

632 

Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. 

Nat Chem 

633 

Biol

 12: 482-489 

634 

Parmenter TJ, Kleinschmidt M, Kinross KM, Bond ST, Li J, Kaadige MR, Rao A, Sheppard 

635 

KE, Hugo W, Pupo GM

 et al

 (2014) Response of BRAF-mutant melanoma to BRAF inhibition 

636 

is mediated by a network of transcriptional regulators of glycolysis. 

Cancer Discov

 4: 423-433 

637 

Pavlova NN, Zhu J, Thompson CB (2022) The hallmarks of cancer metabolism: Still emerging. 

638 

Cell Metab

 34: 355-377 

639 

Quek L-E, van Geldermalsen M, Guan YF, Wahi K, Mayoh C, Balaban S, Pang A, Wang Q, 

640 

Cowley MJ, Brown KK

 et al

 (2022) Glutamine addiction promotes glucose oxidation in triple-

641 

negative breast cancer. 

Oncogene

 41: 4066-4078 

642 

Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, Zecchin A, Cantelmo AR, 

643 

Christen S, Goveia J

  et al

  (2015) Fatty acid carbon is essential for dNTP synthesis in 

644 

endothelial cells. 

Nature

 520: 192-197 

645 

Shorthouse D, Bradley J, Critchlow SE, Bendtsen C, Hall BA (2022) Heterogeneity of the 

646 

cancer cell line metabolic landscape. 

Mol Syst Biol

 18 

647 

Smith B, Schafer XL, Ambeskovic A, Spencer CM, Land H, Munger J (2016) Addiction to 

648 

Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells. 

Cell Rep

 17: 821-

649 

836 

650 

Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular 

651 

metabolism. 

Nat Cell Biol

 20: 745-754 

652 

Sung Y, Yu YC, Han JM (2023) Nutrient sensors and their crosstalk. 

Exp Mol Med

 55: 1076-

653 

1089 

654 

Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, Gill S, 

655 

Harrington WF, Pantel S, Krill-Burger JM

 et al

 (2017) Defining a Cancer Dependency Map. 

656 

Cell

 170: 564-576.e516 

657 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint 

2024.02.18.580900v1.full-html.html
background image

38 

van den Heuvel AP, Jing J, Wooster RF, Bachman KE (2012) Analysis of glutamine 

658 

dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell 

659 

growth. 

Cancer Biol Ther

 13: 1185-1194 

660 

Vincent Emma E, Sergushichev A, Griss T, Gingras M-C, Samborska B, Ntimbane T, Coelho 

661 

Paula  P, Blagih J, Raissi Thomas  C, Choinière L

  et al

  (2015) Mitochondrial 

662 

Phosphoenolpyruvate Carboxykinase Regulates Metabolic Adaptation and Enables Glucose-

663 

Independent Tumor Growth. 

Mol Cell

 60: 195-207 

664 

Vousden KH, Ryan KM (2009) p53 and metabolism. 

Nat Rev Cancer

 9: 691-700 

665 

Wang P, Ma J, Li W, Wang Q, Xiao Y, Jiang Y, Gu X, Wu Y, Dong S, Guo H

 et al

 (2023) 

666 

Profiling the metabolome of uterine fluid for early detection of ovarian cancer. 

Cell Rep Med

667 

101061 

668 

Warburg O (1925) über den Stoffwechsel der Carcinomzelle. 

Klin Wochenschr

 4: 534-536 

669 

Warburg O, Minami S (1923) Versuche an Überlebendem Carcinom-gewebe. 

Klin Wochenschr

 

670 

2: 776-777 

671 

Wicker CA, Hunt BG, Krishnan S, Aziz K, Parajuli S, Palackdharry S, Elaban WR, Wise-

672 

Draper TM, Mills GB, Waltz SE

 et al

 (2021) Glutaminase inhibition with telaglenastat (CB-

673 

839) improves treatment response in combination with ionizing radiation in head and neck 

674 

squamous cell carcinoma models. 

Cancer Lett

 502: 180-188 

675 

Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith 

676 

JA, Thompson IR

 et al

 (2012) Genomics of Drug Sensitivity in Cancer (GDSC): a resource for 

677 

therapeutic biomarker discovery in cancer cells. 

Nucleic Acids Res

 41: D955-D961 

678 

 

679 

.

CC-BY-NC-ND 4.0 International license

perpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this

this version posted February 21, 2024. 

https://doi.org/10.1101/2024.02.18.580900

doi: 

bioRxiv preprint