background image

 

Apical cell expansion maintained by Dusky-like establishes a scaffold for 

corneal lens morphogenesis 

 

 

Neha Ghosh and Jessica E. Treisman

1

 

 

Department of Cell Biology, NYU Grossman School of Medicine, 540 First Avenue, New York, 

NY 10016 

 

1)

 

Corresponding author and lead contact: Tel. 212-263-1031, 

Jessica.Treisman@nyulangone.org 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

Summary  

The biconvex shape of the 

Drosophila

 corneal lens, which enables it to focus light onto the 

retina, arises by organized assembly of chitin and other apical extracellular matrix components. 

We show here that the Zona Pellucida domain-containing protein Dusky-like is essential for 

normal corneal lens morphogenesis. Dusky-like transiently localizes to the expanded apical 

surfaces of the corneal lens-secreting cells, and in its absence, these cells undergo apical 

constriction and apicobasal contraction. Dusky-like also controls the arrangement of two other 

Zona Pellucida-domain proteins, Dumpy and Piopio, external to the developing corneal lens. 

Loss of either 

dusky-like

 or 

dumpy

 delays chitin accumulation and disrupts the outer surface of 

the corneal lens. Artificially inducing apical constriction with constitutively active Myosin light 

chain kinase is sufficient to similarly alter chitin deposition and corneal lens morphology. These 

results demonstrate the importance of cell shape for the morphogenesis of overlying apical 

extracellular matrix structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key words: Dusky-like, 

Drosophila,

 corneal lens, Zona Pellucida domain, apical constriction, 

chitin, Dumpy, myosin

  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

Introduction 

The extracellular matrix (ECM) is a complex array of proteins and polysaccharides that 

provides structural and biochemical support to tissues. Mutations affecting the ECM can cause 

numerous human genetic disorders including cancer, muscular dystrophy, hematuria, and 

retinopathy 

1-3

. Basement membrane ECM, which forms a sheet underlying epithelial cells, is 

made up of conserved proteins such as collagen, nidogen, perlecan, and laminins. It can mediate 

adhesion between tissue layers, insulate cells from the extracellular fluid, transmit mechanical 

forces, influence the distribution of signaling molecules, and act as a substrate for cell migration 

4,5

. Less is known about the apical ECM (aECM), which has diverse forms and functions. 

External aECMs such as invertebrate cuticles can act as permeability barriers and protect against 

desiccation, and the shapes of tubular organs such as the 

Drosophila

 trachea and 

C. elegans

 

excretory system depend on luminal scaffolds composed of aECM 

6,7

. In vertebrates, aECM 

forms structures such as the tectorial membrane of the inner ear, the vascular glycocalyx, 

pulmonary surfactant, and the mucin-rich lining of the gut 

8-13

. The morphogenesis of aECM 

assemblies is not fully understood, although in a few cases it has been linked to cytoskeletal 

organization in the underlying cells 

14,15

.  

One of the most striking structures composed of aECM is the 

Drosophila

 corneal lens, 

which consists of fibers of the polysaccharide chitin and associated proteins arranged to form a 

precisely curved biconvex shape 

16,17

. The corneal lens of each ommatidium of the compound 

eye is secreted during the second half of pupal development by the underlying non-neuronal cells 

18

. Major corneal lens constituents such as Crystallin are produced by the central cone and 

primary pigment cells, while additional components are derived from the secondary and tertiary 

pigment cells attached to the corneal lens periphery 

16,19

. Although it is not known how these 

cells specify the shape of the corneal lens, we have previously shown that the transcription factor 

Blimp-1 is essential to generate its outer curvature 

20

. Many Blimp-1 target genes encode aECM 

components, including members of the most conserved family of aECM proteins, which are 

characterized by a Zona Pellucida (ZP) domain 

20,21

The ZP domain was initially identified in constituents of the extracellular coat 

surrounding the mammalian oocyte 

22,23

, but has since been found in proteins implicated in many 

developmental processes 

21,24

. Mutations affecting human ZP-domain proteins are associated 

with disease conditions that include infertility, deafness, vascular disorders, inflammatory bowel 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

disease, kidney disease, and cancer 

22,25-30

. The 260 amino acid ZP domain can mediate 

homomeric or heteromeric polymerization into filaments; it consists of N- and C-terminal 

subdomains with structures related to immunoglobulin domains that are stabilized by conserved 

disulfide bonds 

31-33

. Some ZP-domain proteins are tethered to the plasma membrane by a 

transmembrane domain or GPI linkage, while others undergo proteolytic cleavage and are 

secreted into the extracellular space 

34-37

.  

ZP-domain proteins have been found to play a crucial role in shaping the aECM and 

attaching it to the apical plasma membrane 

7,21

. For instance, the 

a

-tectorin ZP-domain protein is 

essential for attachment of the tectorial membrane to the cochlear epithelium 

38

. Filaments of the 

giant 

Drosophila 

ZP-domain protein Dumpy (Dpy) anchor pupal appendages and tendon cells to 

the external cuticle 

39-41

, and the dendrites of sensory organs also require ZP-domain proteins to 

connect them to the cuticle 

37,42

. The lumen of tubular structures in 

Drosophila,

 

C. elegans

, and 

the mammalian kidney is organized by ZP-domain proteins 

29,43-45

. Interestingly, mutations 

affecting eight 

Drosophila

 ZP-domain proteins each have distinct effects on the morphology of 

embryonic denticles, and each protein occupies a specific spatial location in the denticle 

46

indicating that ZP-domain proteins are specialized to assemble aECM into diverse shapes.  

Here, we show that the ZP-domain protein Dusky-like (Dyl) 

46-48

 is essential for normal 

morphogenesis of the 

Drosophila

 corneal lens. During pupal development, 

dyl

 mutant ommatidia 

undergo abnormal apical constriction and apicobasal contraction accompanied by changes in the 

distribution of cytoskeletal proteins. Loss of 

dyl

 also results in changes in the organization of 

other ZP-domain proteins such as Dpy and Piopio (Pio) 

36,43,49

, and a delay in the accumulation 

of chitin. Interestingly, many of these changes can be phenocopied by activating myosin to 

artificially induce constriction of the corneal lens-secreting cells. These observations suggest that 

Dyl acts as a mechanical anchor that transiently attaches the cone and primary pigment cells to 

the aECM to maintain their expanded apical surface area, enabling the generation of a ZP-

domain protein scaffold that shapes the curved corneal lens surface.  

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

Results 

Dyl is necessary for normal corneal lens morphology

 

The 

Drosophila

 corneal lens is a biconvex aECM structure that focuses light onto the 

underlying photoreceptors 

17

. The transcription factor Blimp-1 is necessary for normal corneal 

lens curvature, and its target genes include several that encode ZP-domain proteins 

20

. ZP-

domain proteins have been reported to connect aECM to the plasma membrane of epithelial 

cells, and mutations affecting these proteins can alter the shape of cuticular structures such as 

embryonic denticles 

46

 and bristles 

47,48

. We therefore used existing mutants and RNAi lines to 

test whether any ZP-domain targets of Blimp-1 were necessary for the normal shape of the 

corneal lens.  

We observed a dramatic effect on the external appearance of the adult eye in clones 

mutant for one such gene, 

dyl

. Scanning electron micrographs showed that in ommatidia 

homozygous for 

dyl

D

42

, a deletion of the entire gene 

46

, the corneal lenses lacked external 

curvature and had gaps in their outer surfaces (Fig. 1A). The same flat shape and abnormal 

surface structure were visible in transmission electron micrographs (Fig. S1A, B). Cryosections 

of eyes stained for chitin with Calcofluor White revealed that the flatter external surfaces of the 

dyl

 mutant corneal lenses were accompanied by more deeply curved internal surfaces than those 

of the adjacent wild-type biconvex corneal lenses (Fig. 1C). Quantification of the outer and inner 

angles between adjacent corneal lenses (Fig. 1E) confirmed that the outer angle was significantly 

increased and the inner angle significantly decreased in 

dyl 

mutant regions (Fig. 1F, G). The 

changes in corneal lens shape observed in 

dyl

D

42

 mutants, which included increased height and 

reduced width, were rescued by expression of a 

UAS-dyl

 transgene 

46

 in all retinal cells with 

lGMR-GAL4 

50

, confirming that the defects were due to loss of 

dyl

 (Fig. 1B, D, F, G, Fig. S1E, 

F). In transmission electron micrographs, we observed that the deeper inner curvature of the 

corneal lens correlated with an increase in its area of contact with the peripheral secondary and 

tertiary pigment cells (Fig. S1A-D, G). Taken together, our results show that the ZP-domain 

protein Dyl is necessary for the normal biconvex shape and external morphology of the corneal 

lens. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

 

Figure 1.

 

dyl 

is necessary for normal corneal lens curvature. 

(

A, B

) Scanning electron 

micrographs of adult eyes. (

A

) in 

dyl

∆42

 

mutant clones, the corneal lens surfaces are flat rather 

than convex, and many appear to be missing parts of the surface layer. (

B

dyl

∆42

 mutant clones 

expressing a 

UAS-dyl 

transgene with 

lGMR-GAL4

 cannot be distinguished from wild-type eye 

tissue. The regions in the yellow boxes are enlarged in (

A’, B’

), and the boundaries of the 

dyl 

mutant clone are marked with a yellow dotted line in (

A’

). (

C, D

) Horizontal frozen sections of 

adult eyes in which 

dyl

∆42

 mutant clones (

C

) or  

dyl

∆42

 mutant clones expressing 

UAS-dyl 

with 

lGMR-GAL4

 (

D

) are positively marked with GFP (green). The corneal lenses are stained with 

Calcofluor White (

C’, D’,

 blue in 

C, D

) and photoreceptors are marked with anti-Chaoptin (Chp, 

red). 

dyl

 mutant ommatidia have externally flat corneal lenses (yellow arrows, 

C

) while adjacent 

wild-type ommatidia have biconvex corneal lenses (blue arrows, 

C

). Rescue with 

UAS-dyl

 

restores the normal corneal lens shape (yellow arrows, 

D

). (

E

) Schematic illustration showing 

how the outer and inner angles between adjacent corneal lenses and the height and width of a 
corneal lens were defined. (

F, G

) Graphs showing the outer (

F

) and inner (

G

) angles between 

adjacent corneal lenses in adult eye sections for wild type control regions, 

dyl

∆42

 mutant clones, 

and 

dyl

∆42

 mutant clones in which 

UAS-dyl

 is driven with 

lGMR-GAL4

. For both graphs, error 

bars show mean ± SEM. n values are given as number of ommatidia/number of retinas for this 
and subsequent graphs. Wild type n=70/20, 

dyl 

mutant n=103/20, 

lGMR>dyl

dyl

 mutant n=37/6. 

****p < 0.0001, unpaired two-tailed t test with Welch’s correction. Scale bars: 200 

µ

m (

A

B

), 

2.5 

µ

m (

A’

B’

), 20 µm (

C, D

).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

Loss of 

dyl

 causes apical constriction and apico-basal contraction of ommatidia 

In order to understand how loss of 

dyl

 affects corneal lens shape, we traced the mutant 

phenotype earlier in development. Corneal lens secretion initiates at 50 h APF and continues 

through the late pupal stages 

18

. Major components of the corneal lens such as Crystallin and 

Retinin are produced by the underlying cone and primary pigment cells, and additional 

constituents are secreted by the secondary and tertiary pigment cells (also called lattice cells, Fig. 

2G) 

16

. To determine the site of Dyl expression in the retina, we used an antibody against Dyl 

46

and identified specific labeling by its absence in 

dyl

 mutant clones (Fig. 2A, B, Fig. S2A, B). We 

observed that Dyl was present on the apical surface of the cone and primary pigment cells at 48 h 

APF (Fig. 2A) and 50 h APF (Fig. S2A). Dyl protein levels were reduced at 52 h APF (Fig. S2B) 

and became very low at 54 h APF (Fig. 2B), consistent with the transient 48 h APF peak of 

dyl 

mRNA reported by modENCODE 

51

.  

dyl

 

mutant

 

ommatidia showed a striking apical constriction starting at 48 h APF (Fig. 2A) 

that became quite pronounced at 54 h APF (Fig. 2B, Fig. S2F). The change was driven by a large 

decrease in the apical surface area of the cone and primary pigment cells (central cells) (Fig. 

2D); in contrast, the apical width of the lattice cells expanded (Fig. 2E). The apical constriction 

of 

dyl

 

mutant ommatidia was accompanied by apical-basal contraction, placing their apical 

surfaces in a deeper plane than the wild-type ommatidia at 54 h APF (Fig. 2B). This change 

could also be visualized in cryosections of 60 h APF pupal retinas, in which 

dyl

∆42 

ommatidia 

were shorter than their wild-type neighbors (Fig. 2C, F). In these sections, the wild-type corneal 

lenses labeled with a fluorescent chitin-binding domain (CBD) had convex outer surfaces, 

whereas corneal lenses corresponding to 

dyl

 

clones were flat or convoluted (Fig. 2C). Expression 

of the wild-type UAS-

dyl

 transgene rescued both the apical constriction and apicobasal 

contraction displayed by 

dyl

∆42 

mutants (Fig. S2C-F).  These data suggest that Dyl acts at the 

apical surfaces of cone and primary pigment cells to maintain their apical expansion (Fig. 2G). 

The apicobasal contraction of 

dyl

 mutant ommatidia correlates with a change in the shape of the 

developing corneal lens (Fig. 2H).  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

 

 

Figure 2.

 

Loss of 

dyl

 causes apical constriction and apico-basal contraction of ommatidia.

 

(

A, B

) Retinas containing 

dyl

∆42

 mutant clones marked with GFP (green) and stained with anti-

Dyl (

A’

B’

, red in 

A

B

) and anti-Armadillo (Arm) to mark apical junctions (

A’’

B’’

, blue in 

A

B

) at (

A

) 48 h APF and (

B

) 54 h APF. The 

dyl

∆42

 mutant clones show loss of Dyl staining in cone 

and primary pigment cells (there is non-specific staining of the lattice cells), and a marked 
reduction in their apical surface area (yellow arrows, 

A”

; yellow outline, 

B’’

) as well as 

apicobasal contraction; the apical plane of the 

dyl

 mutant ommatidium outlined in yellow is in 

the same confocal section as a more basal plane of the wild-type ommatidium outlined in blue 
(

B”

).  (

C

) Horizontal cryosection of a 60h APF retina showing apicobasal contraction in 

dyl

∆42

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

mutant clones marked with GFP (green, yellow arrows) in comparison to wild type ommatidia 
(blue arrows). An Alexa647-labeled chitin binding domain (CBD, 

C’, 

blue in 

C

) marks the 

corneal lenses, which are flattened and distorted in 

dyl

 mutant clones, and photoreceptor 

rhabdomeres are stained with anti-Chp (red). Dotted lines show how ommatidial height was 
measured. Scale bars: 10 µm (

A, B

), 20 µm (

C

). (

D, E

) Graphs depicting (

D

) apical surface area 

of the central cone and primary pigment cells and (

E

) lattice cell width in 

dyl

∆42

 mutant clones 

and control wild-type ommatidia in the same retinas, at 48 h APF (n=28/18 for control and 32/18 
for 

dyl 

in 

D

, n=69/7 for control and 61/7 for

 dyl 

in 

E

) and 54 h APF (n=44/27 for control and 

52/12 for 

dyl 

in 

D

, n=37/7 for control and 57/7 for

 dyl 

in 

E

). (

F

) graph showing ommatidial 

height in 

dyl

∆42

 mutant clones and control wild-type ommatidia at 60 h APF (n=21/5 for control 

and 35/5 for 

dyl

). For all graphs, error bars show mean ± SEM. ****p < 0.0001, *p = 0.0221, 

unpaired two-tailed t test with Welch’s correction. (

G

) Schematic representations of ommatidia at 

54 h APF. Cone cells (CC, green) and primary pigment cells (1°, yellow), together known as the 
central cells, are surrounded by a lattice of secondary pigment cells (2°, cyan), tertiary pigment 
cells (3°, indigo), and bristles (B, red). In controls, we hypothesize that Dyl attaches the central 
cells to the aECM to maintain their apical surfaces in an expanded state. In 

dyl

 mutants

,

 the 

central cells would lose their apical attachments and contract. (

H

) Schematic of horizontal views 

of control and 

dyl

 mutant adult ommatidia. The corneal lens (pink) may maintain its attachment 

to the lattice cells as the ommatidium contracts basally, flattening its external curvature and 
deepening its internal curvature.  
 

Loss of 

dyl

 causes cytoskeletal reorganization 

We next investigated how the organization of the cytoskeleton was affected in 

dyl 

mutant 

clones. Using the actin-binding domain of the ERM protein Moesin (Moe) tagged with mCherry 

52

 to label actin filaments, we found that at 60 h APF more Moe::mcherry accumulated at the 

apical surface of 

dyl

 mutant ommatidia than in neighboring wild-type ommatidia, implying that 

the actin cytoskeleton is condensed in 

dyl 

mutant cells (Fig. 3A). Actomyosin contraction can be 

induced by phosphorylation of the non-muscle myosin II regulatory light chain, known in 

Drosophila

 as Spaghetti squash (Sqh) 

53

. We stained 

dyl

D

42 

clones in the pupal retina

 

with an 

antibody against phospho-Sqh (pSqh) 

54

 and found it to be enriched in lattice cells at 50 h APF in 

both wild-type and 

dyl

 mutant regions (Fig. S3A). At 54 h APF pSqh was present in discrete foci 

at the apical surfaces of wild-type cone and primary pigment cells, whereas in 

dyl

∆42 

clones, 

pSqh was more uniformly distributed (Fig. 3B). Loss of 

dyl

 had a similar effect on the 

distribution of beta-heavy spectrin (β

H

-spectrin) (Fig. 3C, S3B), a component of the spectrin-

based membrane cytoskeleton encoded by the gene 

karst 

(

kst

) that has been reported to control 

apical cell surface area 

55

. Similar foci of phospho-Sqh and β

H

-spectrin have been observed in 

cells undergoing pulsatile apical constriction and ratcheting, in the embryonic mesoderm and 

other contexts 

56,57

. Myosin foci are also associated with fluctuations in the area of cone and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

10 

primary pigment cells as they expand earlier in pupal development 

58

. The lack of such foci in 

dyl 

mutant cells may indicate that their constriction is a less organized process.  

 

 

 

Figure 3.

 

Loss of 

dyl

 alters the distribution of cytoskeletal proteins. 

(

A

) Cryosection of a 60 h 

APF retina showing Moe::mCherry (red) accumulation at the apical surface in 

dyl

∆42

 mutant 

clones (yellow arrows) marked with GFP (green). Blue arrows mark wild type ommatidia. CBD 
(blue) labels the corneal lens. (

B, C

) 54 h APF retinas containing 

dyl

∆42

 mutant clones marked 

with GFP (green), stained with anti-Ecad and anti-Ncad (blue), anti-pSqh (

B’

, red in 

B

), or anti-

β

H

-spectrin (

C’

, red in 

C

). In wild-type ommatidia at this stage pSqh and β

H

-spectrin form foci, 

but in 

dyl

∆42

 mutant clones they are diffusely localized. Confocal sections showing the apical 

surfaces of individual wild-type (

B’’, C’’

) or 

dyl 

mutant (

B’’’, C’’’

) ommatidia labeled with anti-

Ecad and anti-Ncad (green) and anti-pSqh (magenta, 

B’’, B’’’

) or anti-β

H

-spectrin (magenta, 

C’’, 

C’’’

) show that the differences are not due to the more basal position of 

dyl 

mutant ommatidia. 

(

D

) A 54 h APF retina with 

dyl

∆42

 mutant clones expressing 

UAS-Mlck RNAi

 with 

lGMR-GAL4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

11 

marked with GFP (green). Apical cell junctions are stained with anti-Ecad and anti-Ncad (

D’

magenta in 

D

). (

E

) Graph showing the apical surface area of central cells in 

dyl

∆42

 mutant clones 

and internal wild type control ommatidia (data from 

Fig. 2D

), and in 

dyl

∆42

 mutant clones 

expressing 

Mlck RNAi

 (n=19/8) at 54 h APF. Knocking down 

Mlck

 partially rescues the apical 

constriction phenotype. (

F

) Horizontal cryosection of an adult eye with 

dyl

∆42

 mutant clones 

expressing 

Mlck RNAi

 labeled with GFP (green, yellow arrows), stained with anti-Chp (blue) and 

CBD (red). Scale bars: 10 µm (

A-D

), 5 

µ

m (

B’’, B’’’, C’’, C’’’

), 20 

µ

m (

F

). (

G

) Graph showing 

the outer angle between adjacent corneal lenses in control, 

dyl

∆42

 mutant clones (data from 

Fig. 

1F

), and 

dyl

∆42

 mutant clones expressing 

Mlck RNAi

 (n=41/8)

Knocking down 

Mlck

 is not 

sufficient to restore normal corneal lens curvature in 

dyl

∆42

 mutant clones. Error bars show mean 

+/-SEM. ****p < 0.0001, unpaired two-tailed t test with Welch’s correction.  

 

Artificially induced apical constriction alters corneal lens shape

 

We attempted to test whether apical constriction was necessary for the effect of 

dyl

 on 

corneal lens shape by knocking down 

Myosin light chain kinase

 (

Mlck)

, which encodes a kinase 

that phosphorylates Sqh to induce actomyosin contraction 

59

, in 

dyl

∆42 

clones. A significant 

change in corneal lens shape was still observed, but because the apical constriction was not fully 

rescued, we could not determine whether 

dyl 

has an effect on corneal lens shape that is 

independent of apical constriction (Fig. 3D-G). Knocking down 

kst

 also partially rescued the 

apical constriction of 

dyl

 mutant ommatidia, but did not restore normal corneal lens curvature 

(Fig. S3C-F). These knockdowns may have been incomplete, or the constriction may be partially 

independent of Mlck and β

H

-spectrin activity. If Dyl-mediated attachments to the apical ECM 

exert tension on the apical surfaces of the cone and primary pigment cells to maintain their 

expansion, loss of these attachments could result in passive constriction of the apical surfaces.  

We next tested whether apical constriction was sufficient to explain the effect of 

dyl 

on 

corneal lens shape. We artificially induced apical constriction by expressing a constitutively 

active form of Mlck (

UAS-Mlck

CT

60

 with 

lGMR-GAL4

 in clones in the retina. We confirmed 

that 

Mlck

CT

-expressing clones exhibited strong apical constriction in the mid-pupal retina (Fig. 

4A). At the adult stage, the overlying corneal lenses were externally flat with deep and distorted 

internal curvature (Fig. 4B-D). Apical constriction in 

dyl

∆42

 

clones is limited to the cone and 

primary pigment cells (Fig. 2D, E). Expressing 

UAS-Mlck

CT

 specifically in cone and primary 

pigment cells with 

sparkling-GAL4

 (

spa-GAL4

61

 resulted in a change in pSqh distribution and 

corneal lens shape similar to 

dyl

 mutant clones, indicating that constriction of these cells is 

sufficient to alter corneal lens curvature (Fig. 4E-G).  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

12 

 

Figure 4. Apical constriction of central cells is sufficient to alter corneal lens shape.

 (

A, B

)

 

Expression of a constitutively active form of 

Mlck 

(UAS-

Mlck

CT

) in clones marked with GFP 

(green) in a 48 h APF pupal retina (

A

) and adult eye section (

B

) stained for Arm (

A’

, magenta in 

A

), Chp (red in 

B

) and Calcofluor White (B’, blue in B). UAS-

Mlck

CT

 clones display strong 

apical constriction of central cells (yellow asterisk, 

A’

), and in the adult eye, they show distorted 

corneal lenses with flatter external surfaces and deeper internal curvature (yellow arrows in 

B’

than controls (blue arrow). (

C, D

) Graphs showing (

C

) outer angle and (

D

) inner angle between 

adjacent corneal lenses in control, 

dyl

∆42

 mutant clones (data from 

Fig. 1F, G

), and 

Mlck

CT

 

overexpressing clones (n=31/5). Error bars show mean +/-SEM. ****p < 0.0001, ns p=0.369, 
unpaired two-tailed t test with Welch’s correction. (

E, F

) UAS-

Mlck

CT

 is expressed only in cone 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

13 

and primary pigment cells with 

spa-GAL4

 in clones marked with GFP (green) at 48 h APF (

E

) or 

54 h APF (

F

). Retinas are stained with anti-E-Cad and anti-N-Cad (

E’

, magenta in 

E, 

blue in

 F

and anti-pSqh (F’, red in F) 

.

 The clones show apical constriction of the central cells and 

expansion of the lattice cells (asterisks in 

E’

) and accumulation of disorganized pSqh.  (

G

Horizontal cryosection of an adult eye in which 

spa-GAL4

 drives 

UAS-MLCK

CT

 in all 

ommatidia, stained for Chp (red), CBD (green) and the neuronal nuclear marker Elav (blue). 
CBD staining shows external flattening and deep internal curvature of the corneal lenses. Scale 
bars: 10 µm (

A, E, F

), 20 µm (

B,

 

G

).  

 

Dyl affects the organization of other ZP-domain proteins 

 

The ZP domain is known to mediate homodimerization or heterodimerization, allowing 

ZP-domain proteins to form extended filaments. Previous studies have shown that the ZP-

domain protein Dpy 

49

 interacts with another ZP-domain protein, Piopio (Pio), in the epidermis 

and the lumen of the tracheal system 

36,43

. Additionally, the ZP-domain protein Quasimodo 

(Qsm) modifies the strength of the Dpy filaments that connect tendon cells to the external pupal 

cuticle 

40

. Since Dyl is only transiently expressed in the developing pupal retina, we wondered 

whether it might interact with other ZP-domain proteins to maintain corneal lens structure. To 

test this hypothesis, we examined the effect of loss of 

dyl

 on the organization of Dpy and Pio, 

which we found to colocalize in the pupal retina (Fig. S5A). At 50 h APF, Dpy and Pio were 

uniformly localized above the cone and primary pigment cells in both wild type and 

dyl

∆42 

ommatidia (Fig. 5A, Fig. S5B). By 54 h APF, Dpy and Pio were organized into a variety of linear 

structures above the central region of wild-type ommatidia, but maintained their uniform 

distribution in 

dyl

∆42 

clones (Fig. 5B, G). Loss of 

dyl

 had a similar effect on another ZP-domain 

protein, Trynity (Tyn) 

46,62

 (Fig. S5C). These observations suggest that other ZP-domain proteins 

depend on Dyl for their normal organization.  

Tyn, like Dyl, was only detected at mid-pupal stages, but Dpy and Pio were maintained 

into adulthood. At 60 h and 72 h APF, we found that Dpy and Pio were apical to chitin in the 

developing corneal lens, and had a less convex shape in 

dyl

∆42 

clones than in wild-type 

ommatidia (Fig. 5C, D, H). However, when pseudocone secretion begins at 84 h APF and in the 

adult eye, Dpy and Pio were lost from the outer surface of the eye and only present in the 

pseudocone below the corneal lens in both wild-type and 

dyl

 

mutant ommatidia (Fig. 5E, F, I). 

Dpy and Pio are thus in a position to provide outer and inner boundaries for the corneal lens as it 

is being secreted.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

14 

 

Figure 5. Loss of 

dyl

 affects the organization of Dpy and Pio at mid-pupal stages. 

(

A, B

)

 

Pupal retinas at 50 h APF (

A

) and 54 h APF (

B

)

 

with 

dyl

D

42

 clones marked by myristoylated 

Tomato (red), stained for Dpy-YFP (

A’

B’

, green in 

A

B

) and Arm (blue). Dpy-YFP takes on a 

linear organization that becomes more pronounced at later stages in wild-type but not 

dyl

 mutant 

ommatidia. 

(C-F)

 Horizontal sections of retinas containing 

dyl

D

42

 clones marked by 

myristoylated Tomato (red) at 60 h APF (

C

), 72 h APF (

D

), 84 h APF (

E

) and adult stage (

F

), 

stained for Dpy-YFP (green) and CBD (blue, 

C

D

) or Calcofluor White (blue, 

E

F

). From 60-

72 h APF Dpy-YFP is present external to the chitin layer of the corneal lenses and is less convex 
in 

dyl

 mutant clones (yellow arrows) than wild-type (blue arrows), but at 84 h APF it is lost from 

the external surface and begins to be secreted into the pseudocone under the corneal lens, where 
it remains in the adult. (

G-I

dyl

∆42

 mutant clones marked with GFP (green) in a 54 h APF retina 

(G)

, and in horizontal cryosections of 60 h APF 

(H)

 and adult 

(I)

 retinas, stained for Pio (

G’

, red 

in 

G-I

), Ecad and Ncad (blue in 

G

), or CBD (blue in 

H

I

).  Pio localizes in a similar pattern to 

Dpy-YFP in pupal retinas, but is restricted to the basal part of the pseudocone in adults. Dpy and 
Pio are also visible in mechanosensory bristles in (

C, D, H

). Scale bars: 10 µm (

A, B, G

), 20 µm 

(

C-F, H-I

).  

 
 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

15 

Dpy and Pio are required for normal corneal lens shape 

The Dpy protein, the largest isoforms of which have molecular weights close to 2.5 MDa, 

is known to promote membrane attachment to the cuticle in the embryonic trachea, the pupal 

wing, and pupal tendon cells, where it forms long filamentous structures 

39,40,43,49

. We 

hypothesized that Dpy might also contribute to attaching the corneal lens cuticle to the 

underlying cells. To test this idea, we generated clones homozygous for the lethal allele 

dpy

lv1

 

36

 

in the retina and examined them at pupal and adult stages. In adults, the overlying corneal lenses 

showed abnormal and irregular shapes (Fig. 6B, F, G), comparable to 

dyl

∆42 

clones. However, 

dpy

 mutant ommatidia were not shorter on the apical-basal axis, consistent with the lack of 

significant apical constriction in 

dpy

 clones earlier in development (Fig. 6A, E).  Clones mutant 

for the protein null allele 

pio

V132

 

36

 (Fig. S6A) had no effect on apical constriction (Fig. 6C, Fig. 

S6A) and did not alter the external curvature of the corneal lens (Fig. 6D, F), but showed a deep 

and distorted inner corneal lens curvature (Fig. 6D, G). The protein null allele 

tyn

1

 

62

 did not 

affect corneal lens shape (Fig. S6B-D). These results indicate that Dpy and Pio organized by Dyl 

have critical roles in determining corneal lens shape independent of apical cell size. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

16 

 

Figure 6. Loss of 

dpy

 or 

pio

 alters corneal lens shape. 

(

A, B

) 50 h APF retina (

A

) and adult eye 

section (

B

) containing 

dpy

lv1

 mutant clones labeled with GFP (green), stained for Ecad and Ncad 

(

A’

, magenta in 

A

), Chp (blue in 

B

) and CBD (

B’

, red in 

B

). Although 

dpy

lv1

 mutant clones in the 

pupal retina show little apical constriction, corneal lenses in the adult eye have distorted shapes 
including changes in the inner and outer curvature (yellow arrows) in comparison to adjacent 
control corneal lenses (blue arrows). (

C, D

) 54 h APF retina (

C

) and adult eye section (

D

containing 

pio

V132

 mutant clones labeled with GFP (green), stained for Ecad and Ncad (

C’

magenta in 

C

), Chp (red in 

D

) and CBD (

B’

, blue in 

B

). 

pio

 mutant clones do not show apical 

constriction at 54 h APF. In adults, 

pio

 mutant corneal lenses have normal outer curvature, but 

increased and distorted inner curvature (yellow arrows). (

E

) Graph showing the apical surface 

area of central cells in 

dpy

lv1

 mutant clones (n=22/10) compared to internal control wild-type 

ommatidia (n=27/10) and 

dyl

D

42

 mutant clones (n=73/23) at 50 h APF. Although 

dyl 

mutant 

ommatidia are significantly constricted at this stage, 

dpy

 mutant ommatidia are not. (

F, G

Graphs illustrating the outer angle (

F

) and inner angle (

G

) between neighboring corneal lenses in 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

17 

control, 

dyl

∆42

 mutant clones (data from 

Fig. 1F, G

), 

dpy

lv1

 mutant clones (n=30/5) and 

pio

V132

 

mutant clones (n=58/8) in the adult eye. Error bars show mean +/-SEM. ****p < 0.0001, ***p = 
0.0004, ns p = 0.3965 (

E

), 0.1538 (

F

), 0.6419 (

dyl

D

42

 vs 

dpy

lv1

G

), 0.6217 (

dyl

D

42

 vs 

pio

V132

G

), 

0.4525 (

dpy

lv1

 vs 

pio

V132

G

), unpaired two-tailed t test with Welch’s correction. Scale bars: 10 

µm (

A, C

), 20 µm (

B, D

).  

 

ZP-domain proteins act as a scaffold to retain chitin 

 

A major component of the corneal lens is chitin, a polymer of N-acetylglucosamine. 

Chitin assembles into strong fibrillar structures that provide structural integrity 

63

. These chitin 

polymers are associated with numerous chitin-binding proteins, such as Gasp 

64

, which is highly 

expressed in the pupal retina 

20

. To examine whether the secretion or arrangement of chitin was 

affected in 

dyl

 mutants, we stained 

dyl

∆42 

clones in the pupal retina with a fluorescently labeled 

CBD probe 

20

. We observed that at 50 h APF, chitin fibrils were located on the apical surface of 

wild-type ommatidia, but in 

dyl

∆42 

clones chitin accumulation was sparse (Fig. S7A). At 54 h 

APF high levels of chitin were localized above wild-type ommatidia, but chitin was absent above 

dyl

 

clones and did not appear to be stuck in the secretory pathway within the mutant cells (Fig. 

7A, B). This phenotype could be rescued by expressing a 

UAS-dyl

 transgene in all retinal cells 

(Fig. S7H). Similarly, Gasp was not observed above 

dyl

∆42 

clones at either 50 h (Fig. S7B) or 54 

h APF (Fig. 7D). 

dpy

 mutant clones also showed a loss of chitin accumulation (Fig. 7E), despite 

normal Dyl localization (Fig. S7C), but 

pio

 was not required for chitin retention at this stage 

(Fig. S7D). We first detected chitin above 

dyl 

clones at 57 h APF, but at a lower level than in 

wild-type regions and without the appropriate curvature (Fig. 7C). All these data suggest that ZP-

domain proteins are necessary for the timely assembly of chitin in the corneal lens. We 

hypothesize that an external scaffold that includes Dpy and Pio is crucial to retain the nascent 

chitin layer and mold it into a biconvex shape. Changes in the arrangement of these proteins may 

allow chitin to diffuse away at the stage when it would normally be deposited (Fig. 7H). This 

external scaffold is lost, perhaps through proteolytic degradation 

65,66

, later in development when 

the chitinous corneal lens becomes a strong, rigid structure (Fig. 5E, F, I). The delay in chitin 

assembly in 

dyl

 mutant clones may explain the defects in the surface structure of the adult 

corneal lens (Fig. 1A). 

Interestingly, we observed that chitin was also absent and Dpy was disorganized at 54 h 

APF above clones in which apical constriction of cone and primary pigment cells was induced 

by expressing activated Mlck (Fig. 7F, Fig. S7G). This suggests that the cell shape changes 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

18 

caused by loss of 

dyl 

may be sufficient to explain the altered ZP-domain scaffold and the lack of 

chitin retention. It is also possible that direct interactions with Dpy and Pio contribute to the 

effect of Dyl on their organization, as partially rescuing the constriction defect of 

dyl

 mutant 

clones by knocking down 

Mlck

 failed to rescue Pio organization or chitin accumulation (Fig. 

S7E, F). In addition, scanning electron micrographs confirmed the flat external surfaces of 

ommatidia expressing Mlck

CT

, but did not show the extensive surface gaps that were seen in 

dyl

 

mutant clones (Fig. 7G). These results suggest that Dyl assembles a ZP-domain protein structure 

that prevents dispersal of the components of the developing corneal lens primarily by 

maintaining apical expansion of cone and primary pigment cells, but potentially also through an 

independent mechanism. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

19 

 

Figure 7. ZP-domain proteins and apical expansion are necessary for chitin accumulation.   

(

A-D

) Pupal retinas with 

dyl

D

42

 clones marked with GFP (green), stained with CBD (

A’-C’

, blue 

in 

A-C

) or anti-Gasp (

D’

, blue in 

D

) and anti-Ecad and Ncad (red, 

A, B, D

) or anti-Pio (red, 

C

at (

A

B, D

) 54 h APF and (

C

) a horizontal cryosection at 57 h APF. (

B

) is a more basal plane of 

the retina shown in (

A

). At 54 h APF chitin and Gasp are completely absent above 

dyl 

mutant 

cells. This decrease in accumulation is not due to a block in secretion, as no intracellular chitin is 
detected in the 

dyl

∆42

 mutant clones. Chitin begins to appear above the 

dyl

∆42

 

mutant clones at 57 

h APF, internal to a layer of Pio (yellow arrows in 

C

 and 

C’

). (

E

) 50 h APF pupal retina with 

dpy

lv1 

mutant clones marked by GFP (green) and (

F

) 54 h APF retina with clones overexpressing 

Mlck

CT

 with 

spa-GAL4

 marked by GFP (green) stained with anti-Ecad and Ncad (red) and CBD 

(

E’

F’

, blue in 

E

F

). Loss of 

dpy

 and apical constriction induced by 

Mlck

CT

 result in a similar 

loss of chitin. (

G

) Scanning electron micrograph of an eye containing clones expressing 

UAS-

Mlck

CT

 with 

lGMR-GAL4

. The boxed area is enlarged in (

G’

), and the border of the clone is 

indicated with a dashed yellow line. The corneal lenses in 

Mlck

CT

-expressing ommatidia have 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

20 

flat external surfaces, but there are few gaps in the surface layer. Scale bars: 10 µm (

A-F

), 50 

µ

(

G

), 20 

µ

m (

G’

). (

H

) Model depicting horizontal sections of wild type and 

dyl 

mutant ommatidia 

at 54 h APF. Chitin (pink) is retained by an external scaffold of proteins including Dpy and Pio 
(blue) in wild type ommatidia, but when the scaffold is disorganized in the absence of Dyl or 
Dpy, chitin can diffuse away. 
 
 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

21 

Discussion 

   

We show here that forming the precisely curved architecture of the 

Drosophila 

corneal 

lens from apical ECM requires the ZP-domain protein Dyl. Dyl acts transiently at a critical point 

in development to maintain the apical expansion of corneal lens-secreting cells and to assemble a 

scaffold containing ZP-domain proteins that acts as a convex outer boundary within which chitin 

and other corneal lens components are retained. Our results add to a growing body of evidence 

that the shapes of rigid structures composed of aECM rely on specific sites of attachment to the 

underlying cells that are mediated by ZP-domain proteins 

39,45,46,67

 

Cell shape determines apical ECM shape  

Our data show that the dramatic apical expansion of primary pigment cells in the pupal 

retina 

18,68

 is essential to build a foundation for corneal lens assembly. Reversing this expansion 

either by removing Dyl or by activating myosin contraction results in severe corneal lens defects. 

The apicobasal contraction that occurs in 

dyl

 mutant or 

Mlck

CT

-expressing ommatidia places the 

apical surfaces of cone and primary pigment cells in a more basal position than their wild-type 

neighbors. If secondary and tertiary pigment cells retain their attachments to the aECM, the 

ommatidial surface would take on a concave shape, potentially explaining the deeper inner 

curvature of the overlying corneal lenses (Fig. 2H). The smaller surface area of the central cells 

could also directly alter the shape of the corneal lens if this structure is assembled one layer at a 

time, like the tectorial membrane 

69

. Such a pattern of assembly would be consistent with 

labeling of the outer surface of the early corneal lens and the inner surface of the adult corneal 

lens by our chitin-binding probe (Fig. 5H, I), if it preferentially binds to newly deposited chitin. 

Constriction or folding of the apical cell surface has been shown to produce ridges of aECM in 

the 

C. elegans

 cuticle and the 

Drosophila

 trachea 

14,15

; our results suggest that apical expansion 

can also drive the morphogenesis of specific aECM structures. 

The striking apical constriction of cone and primary pigment cells that we observed in 

dyl 

mutants implies that Dyl is required to maintain their expanded shape. Dyl is located on the 

apical surfaces of these cells, and it and other ZP-domain proteins have been shown to attach the 

plasma membrane to the apical ECM 

36,37,42,46,70,71

. These attachments can alter cell shape; for 

instance, apical expansion of cells in the pupal wing is dependent on the ZP-domain proteins 

Miniature and Dusky 

72

, NOAH-1 and NOAH-2 are required for the concerted cell shape 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

22 

changes that drive elongation of the 

C. elegans

 embryo 

73

, and Hensin is needed to convert flat 

b

- to columnar 

a

-intercalated cells in the kidney 

74

. The NOAH-1, NOAH-2 and FBN-1 ZP-

domain proteins in the embryonic sheath resist deformation of the 

C. elegans

 epidermis by 

mechanical forces 

70,73

. We suggest that attachment to the aECM by Dyl enables cone and 

primary pigment cells to resist mechanical tension exerted by the actomyosin cytoskeleton. 

Active myosin and 

b

H

-spectrin accumulate in 

dyl

 mutant cells, and reducing the level of these 

components partially rescues apical constriction. However, these proteins appear disorganized 

and do not form foci like those seen in the wild-type cells. Similar foci are associated with 

changes in apical cell area driven by pulsatile constriction and ratcheting 

56-58

, but continuous 

constriction can occur with a diffuse apical actomyosin distribution, for instance in boundary 

larval epithelial cells 

53,75

. The loss of apical anchorage may cause 

dyl

 mutant cells to constrict in 

a continuous, passive manner that does not involve controlled ratcheting.  

 

ZP-domain proteins act as a scaffold for chitin retention 

 

Our data also reveal a role for other ZP-domain proteins, including Dpy and Pio, in 

establishing an external scaffold that helps to shape the corneal lens. Although 

dpy

 mutant 

ommatidia do not show significant constriction, indicating that 

dpy

 acts downstream of or in 

parallel to the cell shape changes, they fail to accumulate chitin at the normal time and produce 

deformed corneal lenses. As chitin is not found trapped inside the mutant cells, it is likely that it 

diffuses away in the absence of the scaffold. Although Pio is not necessary to retain chitin at this 

stage, it appears to have an analogous role later in development, when it is present in the 

pseudocone, to maintain the normal morphology of chitin at the inner surface of the corneal lens 

(Fig. 6D). Dpy and Pio have a similar function in the trachea, where they provide an elastic 

structural element of the lumen that controls its shape and size and maintains the chitin matrix 

66,76,77

. Removal of this structure by proteolysis is necessary for subsequent gas filling of the 

airway 

65,66

, and it is possible that the external corneal lens scaffold is likewise proteolytically 

degraded in late pupal stages. Transient aECM structures containing ZP-domain proteins also 

shape many cuticular and tubular structures in 

C. elegans

 

7

, and 

a

-tectorin on the surface of 

supporting cells templates the assembly of collagen fibrils in each layer of the tectorial 

membrane 

69

.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

23 

   

We find that the arrangement of Dpy and Pio is dependent on Dyl; in wild-type 

ommatidia, they form linear structures, but this organization is not apparent in 

dyl

 mutants. We 

do not know the precise nature of these structures, nor what additional components they may 

contain. ZP-domain proteins are capable of forming heteropolymeric filaments 

31-33

, and another 

ZP protein, Qsm, is known to promote the secretion and remodeling of Dpy filaments that link 

tendon cells to the pupal cuticle, increasing their tensile strength 

40

. Since Dyl is only present in 

the retina for a short time, it may be required to initiate the assembly of a scaffold structure that 

then becomes self-sustaining. Alternatively, since apical constriction is sufficient to alter Dpy 

organization and delay chitin accumulation, the role of Dyl may be limited to maintaining apical 

expansion.

 

Nevertheless, the requirement for 

dyl 

for normal chitin deposition in bristles and wing 

hairs 

47,48

 suggests that promoting chitin assembly, directly or indirectly, is one of its primary 

functions.  

   

Other components of the corneal lens may also be affected by loss of 

dyl

. Although chitin 

levels appear normal in sections of adult retinas, scanning electron micrographs show that the 

external surface of the corneal lens is incomplete. Induced apical constriction does not fully 

reproduce this loss of surface structure, suggesting that it reflects an independent function of Dyl. 

In the pupal wing, 

dyl 

belongs to a cluster of genes with peak expression at 42 h APF, when the 

outer envelope layer of the cuticle is being deposited, but it influences the structure of inner 

layers as well 

78

. Another gene expressed at this time point, 

tyn

, is required for the barrier 

function of the embryonic envelope layer 

62

. It is not clear whether the corneal lens has a typical 

cuticular envelope, but its outermost layer forms nanostructures composed of the Retinin protein 

and waxes 

79

. Although 

retinin

 mRNA is not strongly expressed until very late in pupal 

development 

80

, its expression is initiated at mid-pupal stages when Dyl is present 

16

. It is 

possible that Dyl and the Dpy-Pio scaffold also control the retention of Retinin and other 

components of the outer layer.  

   

In summary, we show here that the development of a biconvex corneal lens depends on 

both its upper and lower boundaries. The upper boundary, a convex shell of aECM that contains 

the ZP-domain proteins Dpy and Pio, encloses chitin and its associated proteins as they are 

secreted by cone and pigment cells. The shape of this shell may be defined by its attachment to 

the peripheral lattice cells and the pressure exerted on its center by secreted corneal lens 

components. The lower boundary is the apical plasma membrane of the cone and primary 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

24 

pigment cells. This membrane is flat until pseudocone secretion initiates late in pupal 

development, and the phenotype of 

dyl 

mutants suggests that it is maintained taut and expanded 

by attachment to the aECM. Loss of this expansion or of the pseudocone components Dpy or Pio 

gives the inner surface of the corneal lens a deeper curvature. It would be interesting to 

investigate whether mechanical forces exerted on the stromal extracellular matrix of the human 

cornea, perhaps through the ZP-domain protein ZP4 present in the underlying corneal 

endothelium 

81

, affect its shape and refractive power 

82,83

.  

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

25 

STAR Methods 

Key resource table 

REAGENT or RESOURCE

 

SOURCE

 

IDENTIFIER

 

Antibodies

 

Chicken polyclonal anti-GFP 

 

Thermo Fisher 

Scientific

 

Cat#A-10262 

RRID:AB_2534023

 

Rabbit polyclonal anti-DsRed

 

Takara Bio

 

Cat#

 

632496 

RRID:AB_10013483

 

Mouse monoclonal anti-DsRed 

 

Invitrogen

 

Cat# MA-15257 

RRID:AB_10999796

 

Mouse monoclonal anti-Armadillo 

 

Developmental Studies 

Hybridoma Bank 

(DSHB)

 

#N2 7A1

 

RRID:AB_528089

 

 

Rat monoclonal anti-E-cadherin 

 

DSHB

 

#DCAD2 

RRID:AB_528120 

Rat monoclonal anti-N-cadherin 

 

DSHB

 

#MNCD2 

RRID:AB_528119

 

Rat monoclonal anti-Elav 

 

DSHB

 

#7E8A10 

RRID:AB_528218

 

Mouse monoclonal anti-Chaoptin 

 

DSHB

 

#24B10 

RRID:AB_528161

 

Mouse monoclonal anti-Gasp 

 

DSHB

 

#2A12 

RRID:AB_528492

 

Rabbit polyclonal anti-ß

H

 spectrin 

 

84

 

N/A

 

Guinea pig polyclonal anti-phospho-Squash 

 

54

 

N/A

 

Rabbit polyclonal anti-Dyl 

 

46

 

N/A

 

Rat polyclonal anti-Tyn

 

46

 

N/A

 

Rabbit polyclonal anti-Pio 

 

43

 

N/A

 

Chemicals, peptides, and recombinant proteins

 

Calcofluor White ( Fluorescent Brightener 28 disodium 
salt solution) 

Sigma Aldrich

 

Cat# 910090

 

10% Formaldehyde

 

Polysciences 

Cat# 

04018-1

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

26 

16%  Paraformaldehyde

 

Fisher Scientific 

Cat# 50-980-487 

Chitin Binding Domain-Alexa Fluor 488 

20

 

 

Chitin Binding Domain-Alexa Fluor 546 

20

 

 

Chitin Binding Domain -Alexa Fluor 647 

20

 

 

Experimental models: Organisms/strains

 

D. melanogaster: w

1118

 

Bloomington 

Drosophila

 Stock 

Center (BDSC)

 

BDSC:3605; FlyBase: 

FBst0003605

 

D. melanogaster: dyl

 ∆42

 

46

 

N/A

 

D. melanogaster: UAS-dyl 

 

46

 

N/A 

FlyBase: 

FBal0244668

 

D. melanogaster: Moe::mCherry P{sChMCA}22 

 

BDSC

 

 

BDSC:35520; FlyBase: 

FBst0035520

 

D. melanogaster:UAS-kst RNAi 

P{TRiP.GLC01654}attP40

 

 

BDSC

 

 

BDSC:50536; FlyBase: 

FBst0050536

 

D. melanogaster: UAS-Mlck RNAi 

P{KK113175}VIE-

260B

 

VDRC

 

 

VDRC:v109937; 

FBst0481578

 

D. melanogaster: UAS-Mlck

CT 

 

BDSC

 

 

BDSC:37527; FlyBase: 

FBst0037527

 

D. melanogaster: dpy

lv1

 

BDSC

 

 

BDSC:278; FlyBase: 

FBst0000278

 

D. melanogaster: Dpy-YFP 

PBac{681.P.FSVS-

1}dpy

CPTI001769

 

Kyoto Stock Center

 

DGGR:115238; 

FlyBase: FBti0143891

 

D. melanogaster: tyn

1

 

62

 

FlyBase: 

FBal0345589

 

D. melanogaster: FRT42D, pio

V132

 

36

 

BDSC: 99937; FlyBase:

 

FBst0099937

 

D. melanogaster: FRT80B, dyl

 ∆42

 

This study

 

N/A

 

D. melanogaster: UAS-dyl; FRT80B,dyl

 ∆42

 

This study

 

N/A

 

D. melanogaster: Moe::mCherry; FRT80B, dyl

 ∆42

 

This study

 

N/A

 

D. melanogaster: UAS-kst-RNAi; FRT80B, dyl

 ∆42

 

This study

 

N/A

 

D. melanogaster: UAS-Mlck-RNAi; FRT80B, dyl

 ∆42

 

This study

 

N/A

 

D. melanogaster: FRT42D; UAS-Mlck

CT

 

This study

 

N/A

 

D. melanogaster: Dpy-YFP; FRT80B, dyl

 ∆42

 

This study

 

N/A

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

27 

D. melanogaster: FRT40A, dpy

lv1

 

This study

 

N/A

 

D. melanogaster: FRT19A, tyn

1

 

This study

 

N/A

 

D. melanogaster: ey3.5-FLP, spa-GAL4; FRT42D, tub-

GAL80; UAS-CD8-GFP

 

This study

 

N/A

 

D. melanogaster: spa-GAL4 

BDSC 

BDSC:26656; FlyBase: 

FBti0114943

 

Software and algorithms

 

Image J

 

National Institutes of 

Health; 

85

 

http://imagej.nih.gov.ij/

 

Adobe Photoshop

 

Adobe

 

 

GraphPad Prism 10.0

 

GraphPad Software

 

https://www.graphpad.c

om/

 

MS-Office (MS-Word, MS-Powerpoint, MS-Excel)

 

MS-Office

 

 

Other

 

Confocal Microscope

 

Leica 

 

SP8 

 

 

Resource availability 

Lead contact 

Further information and requests for resources and reagents should be directed to and will 

be fulfilled by the lead contact, Jessica E. Treisman (Jessica.Treisman@nyulangone.org). 

Materials availability 

All flies and custom reagents created for this study are available upon request to the lead 

contact.  

Experimental model details 

Fly stocks and genetics

 

Drosophila melanogaster

 strains were maintained on standard yeast-cornmeal-agar media 

and raised at 25°C. For analysis of the pupal retina, white prepupae (0 h APF) were collected 

with a soft wetted brush and cultured at 25°C till the appropriate developmental stage. Both 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

28 

sexes were used interchangeably for all the experiments, as no sex-specific differences were 

observed. 

Drosophila melanogaster

 stocks used to generate 

dyl

 ∆42

 mutant clones were: (1) 

UAS-

CD8-GFP, ey3.5-FLP; lGMR-GAL4; FRT80B, tub-GAL80/TM6B

; (2) 

FRT80B

dyl

∆42

/TM6B

(3) 

Moe::mCherry;

 

FRT80B

dyl

 ∆42

/SM6.TM6B; (4) Dpy-YFP; FRT80B

dyl

 ∆42

/SM6.TM6B

; (5) 

eyFLP; lGMR-GAL4, UAS-myrTomato;

 

FRT80B, tub-GAL80/TM6B;

 (6) 

UAS-dyl; FRT80B

dyl

∆42

/TM6B; 

(7)

 UAS-kst RNAi; FRT80B

dyl

 ∆42

/SM6.TM6B 

(8)

 UAS-Mlck RNAi; FRT80B, 

dyl

∆42

/SM6.TM6B

. Stocks used to generate 

Mlck

CT

 

overexpression clones were: (1) 

UAS-CD8-

GFP, ey3.5-FLP; lGMR-GAL4; FRT42D, tub-GAL80/TM6B

; (2) 

ey3.5-FLP, spa-GAL4; 

FRT42D, tub-GAL80; UAS-CD8-GFP; (3) FRT42D; UAS- Mlck

CT

 

/SM6.TM6B

. Stocks that were 

used to generate 

dpy

lv1 

mutant clones were: (1) 

UAS-CD8-GFP, ey3.5-FLP; FRT40A, tub-

GAL80; lGMR-GAL4 /TM6B

; (2) 

FRT40A

dpy

lv1

/SM6.TM6B. 

Stocks that were used to generate 

pio

V132 

mutant clones were: (1

 UAS-CD8-GFP, ey3.5-FLP; lGMR-GAL4; FRT42D, tub-

GAL80/TM6B

; (2) 

FRT42D

pio

V132

/ SM5.

 Stocks that were used to generate 

tyn

mutant clones 

were: (1)

 ey3.5-FLP, FRT19A, tub-GAL80; lGMR-GAL4, UAS-CD8-GFP /SM6-TM6B

; (2) 

FRT19A

tyn

1

/ FM7, Tb, Ubi-RFP.

  

 

Immunohistochemistry

 

For cryosectioning, adult or pupal heads with the proboscis removed were glued onto 

glass rods using nail polish and fixed for 4 h in 4% formaldehyde in 0.2 M sodium phosphate 

buffer (pH 7.2) (PB) at 4°C. The heads were then incubated through an increasing gradient of 

sucrose in PB (5%, 10%, 25%, and 30% sucrose) for 20 min each, transferred to plastic molds 

containing OCT compound and frozen on dry ice. Cryosections of 12 µm were cut at −21°C, 

transferred onto positively charged slides and postfixed in 0.5% formaldehyde in PB at room 

temperature (RT) for 30 mins. The slides were then washed in PBS with 0.3% Triton X-100 

(PBT) three times for 10 min each, blocked for 1 h at RT in 1% bovine serum albumin (BSA) in 

PBT and incubated in primary antibodies overnight at 4°C in 1% BSA in PBT. After three 20-

minute washes in PBT, slides were incubated in secondary antibodies in 1% BSA in PBT for 2 h 

at RT and mounted in Fluoromount-G (Southern Biotech). A 1:5 dilution of Calcofluor White 

solution (25% in water; Sigma Aldrich, 910090) was included with the secondary antibodies 

where indicated.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

29 

Pupal retinas attached to the brain were dissected from staged pupae and collected in ice-

cold PBS in a glass plate. These samples were fixed on ice in 4% formaldehyde in PBS for 30 

min. The samples were washed three times for 10 min each in PBT and incubated overnight at 

4°C in primary antibodies in 10% donkey serum in PBT. After three 20-min washes in PBT, the 

samples were incubated for 2 h in secondary antibodies in PBT/10% serum at RT, and washed 

again three times for 20 min in PBT. Finally, the retinas were separated from the brain and 

mounted in 80% glycerol in PBS.  

The primary antibodies used were: mouse anti-Chp (1:50; Developmental Studies 

Hybridoma Bank (DSHB), 24B10), chicken anti-GFP (1:400; Thermo Fisher, A-10262), rat anti-

Elav (1:100; DSHB, Rat-Elav-7E8A10), rat anti-Ecad (1:10, DSHB, DCAD2), mouse anti-Gasp 

(1:20, DSHB, 2A12), rabbit anti-Dyl (1:300) 

46

, rat anti-Tyn (1:100) 

46

, rabbit anti-Pio (1:300) 

43

guinea pig anti-pSqh (1:1000) 

54

, and rabbit anti-ß

H

-spectrin (1:5000) 

84

. All antibodies were 

validated either using mutant or knockdown conditions as shown or by verifying that the staining 

pattern matched previously published descriptions. The secondary antibodies used were from 

either Jackson ImmunoResearch (Cy3 or Cy5 conjugates used at 1:200) or Invitrogen (Alexa488 

conjugates used at 1:1000).

 

Fluorescently labeled SNAP-CBD-probes (1:200) 

20

 were included 

with the secondary antibodies.

 

Images were acquired on a Leica SP8 confocal microscope with a 

63X oil immersion lens and processed using ImageJ and Adobe Photoshop.  

 

Electron microscopy 

For transmission electron microscopy, adult heads were cut in half and incubated in 

freshly made fixative containing 2.5% glutaraldehyde, 2% paraformaldehyde, and 0.05% Triton 

X-100 in 0.1 M sodium cacodylate buffer pH 7.2 (CB) on a rotator for at least 4 h until all heads 

had sunk to the bottom of the tube, and then in the same fixative without Triton X-100 overnight 

at 4

°

C on a rotator. After washing three times for 10 min in CB, the heads were post-fixed in 1% 

OsO

4

 in CB for 1.5 h, washed three times for 10 min in water, dehydrated in an ethanol series 

(30%, 50%, 70%, 85%, 95%, 100%), rinsed twice with propylene oxide and embedded in 

EMbed812 epoxy resin (Electron Microscopy Sciences). 70 nm ultrathin sections were cut and 

mounted on formvar-coated slot grids and stained with uranyl acetate and lead citrate 

86

. Electron 

microscopy imaging was performed on a Talos120C transmission electron microscope (Thermo 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

30 

Fisher Scientific) and recorded using a Gatan (4k×4k) OneView Camera with Digital 

Micrograph software (Gatan).  

For scanning electron microscopy, whole flies were fixed for 2 h at room temperature and 

then overnight at 4

°

C in 1% glutaraldehyde/1% formaldehyde/0.2% Triton X-100/0.1 M sodium 

cacodylate pH 7.2. After three 10 min washes in PBS, the flies were postfixed in 1% OsO4 in 

CB for 1 h and rinsed three times for 10 min in water. They were dehydrated in an ethanol series 

(30%, 50%, 70%, 85%, 95%, 3X 100%) and stored in 100% ethanol overnight. The eyes were 

critical point dried using a Tousimis Autosamdri®-931 critical point dryer (Tousimis, Rockville, 

MD), mounted on SEM stabs covered with double sided electron-conductive tape, coated with 

gold/palladium by a Safematic CCU-010 SEM coating system (Rave Scientific, Somerset, NJ), 

and imaged on a Zeiss Gemini300 FESEM (Carl Zeiss Microscopy, Oberkochen, Germany) 

using a secondary electron detector (SE

2

) at 5 kV with working distance (WD) between 15.2 mm 

and 19.4 mm.  

 

Quantification and statistical analysis

 

The outer and inner angles between adjacent corneal lenses were measured according to 

the schematic in Fig. 1E, using the angle tool in ImageJ. To measure the apical surface areas of 

ommatidia and central cells, ROI were drawn and measured in ImageJ using the freehand 

selection tool in Z-projections that included the apical surface of the retina. To measure 

ommatidial height, freehand straight lines were drawn from the corneal lens surface to the base 

of the rhabdomere using the line tool in ImageJ and measured. Values were plotted in GraphPad 

Prism v10. Significance was calculated using Welch's two-tailed unpaired 

t

-tests. Sample 

numbers and definitions of error bars are given in the figure legends. Sample sizes for 

quantifications were not predefined and no samples were excluded.  

 

Data and code availability 

This study did not generate or analyze any datasets/codes. Any additional information 

required to reanalyze the data reported in this paper is available from the Lead Contact upon 

request. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

31 

Acknowledgments 

We thank Markus Affolter, Shigeo Hayashi, François Payre, Robert Ward, Christian 

Klämbt, the Bloomington 

Drosophila

 stock center, the Vienna 

Drosophila

 resource center, the 

Kyoto stock center, and the Developmental Studies Hybridoma Bank for fly stocks and reagents. 

Information available on FlyBase was invaluable for this work. We thank NYULH DART 

Microscopy Laboratory members Alice F.-X. Liang, Joseph Sall, Jason Liang and Chris Petzold 

for consultation and assistance with electron microscopy. This core is partially funded by NYU 

Cancer Center Support Grant NIH/NCI P30CA016087, and the Gemini300 FESEM was 

supported by NIH S10 OD019974. We thank Dhaval Gandhi, Sharukh Khan and Genie Jang for 

technical assistance. The manuscript was improved by the critical comments of Gira Bhabha, 

Maria Bustillo, Holger Knaut, Sudershana Nair, and Hongsu Wang. This work was funded by the 

National Institutes of Health (grant R01EY032896 to J.E.T.). 

 

Author contributions 

Conceptualization, N.G. and J.E.T.; investigation, N.G.; data curation, N.G.; formal 

analysis, N.G. and J.E.T.; writing- original draft, N.G.; writing – review and editing, J.E.T.; 

funding acquisition, J.E.T.; supervision, J.E.T. 

 

Declaration of interests 

The authors declare no competing interests. 

 
 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

32 

References 

1. 

Popova, N.V., and Juecker, M. (2022). The functional role of extracellular matrix proteins 

in cancer. Cancers 

14

, 238.  

2. 

Arseni, L., Lombardi, A., and Orioli, D. (2018). From structure to phenotype: impact of 

collagen alterations on human health. Int J Mol Sci 

19

, 1407. 

3. 

Pozzi, A., Yurchenco, P.D., and Lozzo, R.V. (2017). The nature and biology of basement 

membranes. Matrix Biol 

57-58

, 1-11.  

4. 

Brown, N.H. (2011). Extracellular matrix in development: insights from mechanisms 

conserved between invertebrates and vertebrates. CSH Perspect Biol 

3

, a005082. 

5. 

Walma, D.A.C., and Yamada, K.M. (2020). The extracellular matrix in development. 

Development 

147

, dev175596. 

6. 

Li Zheng, S., Adams, J.G., and Chisholm, A.D. (2020). Form and function of the apical 

extracellular matrix: new insights from 

Caenorhabditis elegans

Drosophila 

melanogaster

, and the vertebrate inner ear. Fac Rev 

9

, 27. 

7. 

Cohen, J.D., and Sundaram, M.V. (2020). 

C. elegans apical

 extracellular matrices shape 

epithelia. J Dev Biol 

8

, 23. 

8. 

Milusev, A., Rieben, R., and Sorvillo, N. (2022). The endothelial glycocalyx: a possible 

therapeutic target in cardiovascular disorders. Front Cardiovasc Med 

9

, 897087.  

9. 

Goodyear, R.J., and Richardson, G.P. (2018). Structure, function, and development of the 

tectorial membrane: an extracellular matrix essential for hearing. Curr Top Dev Biol 

130

217-244.  

10. 

Yamaguchi, M., and Yamamoto, K. (2023). Mucin glycans and their degradation by gut 

microbiota. Glycoconj J 

40

, 493-512.  

11. 

Johansson, M.E., Sjovall, H., and Hansson, G.C. (2013). The gastrointestinal mucus 

system in health and disease. Nat Rev Gastroenterol Hepatol 

10

, 352-361.  

12. 

Perez-Gil, J. (2008). Structure of pulmonary surfactant membranes and films: the role of 

proteins and lipid-protein interactions. Biochim Biophys Acta 

1778

, 1676-1695.  

13. 

Tarbell, J.M., and Cancel, L.M. (2016). The glycocalyx and its significance in human 

medicine. J Intern Med 

280

, 97-113.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

33 

14. 

Ozturk-Colak, A., Moussian, B., Araujo, S.J., and Casanova, J. (2016). A feedback 

mechanism converts individual cell features into a supracellular ECM structure in 

Drosophila

 trachea. eLife 

5

, e09373. 

15. 

Katz, S.S., Barker, T.J., Maul-Newby, H.M., Sparacio, A.P., Nguyen, K.C.Q., Maybrun, 

C.L., Belfi, A., Cohen, J.D., Hall, D.H., Sundaram, M.V., and Frand, A.R. (2022). A 

transient apical extracellular matrix relays cytoskeletal patterns to shape permanent 

acellular ridges on the surface of adult 

C. elegans

. PLoS Genet 

18

, e1010348.  

16. 

Stahl, A.L., Charlton-Perkins, M., Buschbeck, E.K., and Cook, T.A. (2017). The cuticular 

nature of corneal lenses in 

Drosophila melanogaster

. Dev Genes Evol 

227

, 271-278.  

17. 

Charlton-Perkins, M., and Cook, T.A. (2010). Building a fly eye: terminal differentiation 

events of the retina, corneal lens, and pigmented epithelia. Curr Top Dev Biol 

93

, 129-

173.  

18. 

Cagan, R.L., and Ready, D.F. (1989). The emergence of order in the 

Drosophila

 pupal 

retina. Dev Biol 

136

, 346-362.  

19. 

Charlton-Perkins, M.A., Sendler, E.D., Buschbeck, E.K., and Cook, T.A. (2017). 

Multifunctional glial support by Semper cells in the 

Drosophila

 retina. PLoS Genet 

13

e1006782 

20. 

Wang, H., Morrison, C.A., Ghosh, N., Tea, J.S., Call, G.B., and Treisman, J.E. (2022). 

The Blimp-1 transcription factor acts in non-neuronal cells to regulate terminal 

differentiation of the 

Drosophila

 eye. Development 

149

, dev200217. 

21. 

Plaza, S., Chanut-Delalande, H., Fernandes, I., Wassarman, P.M., and Payre, F. (2010). 

From A to Z: apical structures and zona pellucida-domain proteins. Trends Cell Biol 

20

524-532.  

22. 

Nishimura, K., Dioguardi, E., Nishio, S., Villa, A., Han, L., Matsuda, T., and Jovine, L. 

(2019). Molecular basis of egg coat cross-linking sheds light on ZP1-associated female 

infertility. Nat Commun 

10

, 3086. 

23. 

Wassarman, P.M., and Litscher, E.S. (2021). Zona Pellucida genes and proteins: essential 

players in mammalian oogenesis and fertility. Genes 

12

, 1266. 

24. 

McLachlan, I.G., and Heiman, M.G. (2013). Shaping dendrites with machinery borrowed 

from epithelia. Curr Opin Neurobiol 

23

, 1005-1010.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

34 

25. 

Renner, M., Bergmann, G., Krebs, I., End, C., Lyer, S., Hilberg, F., Helmke, B., Gassler, 

N., Autschbach, F., Bikker, F., et al. (2007). DMBT1 confers mucosal protection in vivo 

and a deletion variant is associated with Crohn's disease. Gastroenterology 

133

, 1499-

1509.  

26. 

Mcallister, K.A., Grogg, K.M., Johnson, D.W., Gallione, C.J., Baldwin, M.A., Jackson, 

C.E., Helmbold, E.A., Markel, D.S., Mckinnon, W.C., Murrell, J., et al. (1994). Endoglin, 

a TGF-beta binding protein of endothelial cells, is the gene for hereditary hemorrhagic 

telangiectasia type 1. Nat Genet 

8

, 345-351.  

27. 

Wheeler, E., and Thomas, S. (2019). Diagnosis and long-term management of 

uromodulin kidney disease. Cureus J Med Science 

11

, e4270. 

28. 

Verhoeven, K., Van Laer, L., Kirschhofer, K., Legan, P.K., Hughes, D.C., Schatteman, I., 

Verstreken, M., Van Hauwe, P., Coucke, P., Chen, A., et al. (1998). Mutations in the 

human 

alpha-tectorin

 gene cause autosomal dominant non-syndromic hearing 

impairment. Nat Genet 

19

, 60-62.  

29. 

Vijayakumar, S., Takito, J., Gao, X., Schwartz, G.J., and Al-Awqati, Q. (2006). 

Differentiation of columnar epithelia: the hensin pathway. J Cell Sci 

119

, 4797-4801.  

30. 

Rampoldi, L., Caridi, G., Santon, D., Boaretto, F., Bernascone, I., Lamorte, G., 

Tardanico, R., Dagnino, M., Colussi, G., Scolari, F., et al. (2003). Allelism of MCKD, 

FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum Mol 

Genet 

12

, 3369-3384.  

31. 

Bokhove, M., and Jovine, L. (2018). Structure of Zona Pellucida module proteins. Curr 

Top Dev Biol 

130

, 413-442.  

32. 

Jovine, L., Qi, H.Y., Williams, Z., Litscher, E., and Wassarman, P.M. (2002). The ZP 

domain is a conserved module for polymerization of extracellular proteins. Nat Cell Biol 

4

, 457-461.  

33. 

Stsiapanava, A., Xu, C., Brunati, M., Zamora-Caballero, S., Schaeffer, C., Bokhove, M., 

Han, L., Hebert, H., Carroni, M., Yasumasu, S., et al. (2020). Cryo-EM structure of native 

human uromodulin, a zona pellucida module polymer. EMBO J 

39

, e106807.  

34. 

Williams, Z., and Wassarman, P.M. (2001). Secretion of mouse ZP3, the sperm receptor, 

requires cleavage of its polypeptide at a consensus furin cleavage-site. Biochemistry 

40

929-937.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

35 

35. 

Stanisich, J.J., Zyla, D.S., Afanasyev, P., Xu, J., Kipp, A., Olinger, E., Devuyst, O., 

Pilhofer, M., Boehringer, D., and Glockshuber, R. (2020). The cryo-EM structure of the 

human uromodulin filament core reveals a unique assembly mechanism. eLife 

9

, e60265.  

36. 

Bokel, C., Prokop, A., and Brown, N.H. (2005). Papillote and Piopio: 

Drosophila 

ZP-

domain proteins required for cell adhesion to the apical extracellular matrix and 

microtubule organization. J Cell Sci 

118

, 633-642.  

37. 

Heiman, M.G., and Shaham, S. (2009). DEX-1 and DYF-7 establish sensory dendrite 

length by anchoring dendritic tips during cell migration. Cell 

137

, 344-355.  

38. 

Legan, P.K., Lukashkina, V.A., Goodyear, R.J., Kossi, M., Russell, I.J., and Richardson, 

G.P. (2000). A targeted deletion in alpha-tectorin reveals that the tectorial membrane is 

required for the gain and timing of cochlear feedback. Neuron 

28

, 273-285.  

39. 

Ray, R.P., Matamoro-Vidal, A., Ribeiro, P.S., Tapon, N., Houle, D., Salazar-Ciudad, I., 

and Thompson, B.J. (2015). Patterned anchorage to the apical extracellular matrix defines 

tissue shape in the developing appendages of 

Drosophila

. Dev Cell 

34

, 310-322.  

40. 

Chu, W.C., and Hayashi, S. (2021). Mechano-chemical enforcement of tendon apical 

ECM into nano-filaments during 

Drosophila 

flight muscle development. Curr Biol 

31

1366-1378 e1367.  

41. 

Tsuboi, A., Fujimoto, K., and Kondo, T. (2023). Spatiotemporal remodeling of 

extracellular matrix orients epithelial sheet folding. Sci Adv 

9

, eadh2154.  

42. 

Chung, Y.D., Zhu, J., Han, Y., and Kernan, M.J. (2001). 

nompA

 encodes a PNS-specific, 

ZP domain protein required to connect mechanosensory dendrites to sensory structures. 

Neuron 

29

, 415-428.  

43. 

Jazwinska, A., Ribeiro, C., and Affolter, M. (2003). Epithelial tube morphogenesis during 

Drosophila

 tracheal development requires Piopio, a luminal ZP protein. Nat Cell Biol 

5

895-901.  

44. 

Gill, H.K., Cohen, J.D., Ayala-Figueroa, J., Forman-Rubinsky, R., Poggioli, C., Bickard, 

K., Parry, J.M., Pu, P., Hall, D.H., and Sundaram, M.V. (2016). Integrity of narrow 

epithelial tubes in the 

C. elegans

 excretory system requires a transient luminal matrix. 

PLoS Genet 

12

, e1006205. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

36 

45. 

Cohen, J.D., Sparacio, A.P., Belfi, A.C., Forman-Rubinsky, R., Hall, D.H., Maul-Newby, 

H., Frand, A.R., and Sundaram, M.V. (2020). A multi-layered and dynamic apical 

extracellular matrix shapes the vulva lumen in 

Caenorhabditis elegans

. eLife 

9

, e57874.  

46. 

Fernandes, I., Chanut-Delalande, H., Ferrer, P., Latapie, Y., Waltzer, L., Affolter, M., 

Payre, F., and Plaza, S. (2010). Zona Pellucida domain proteins remodel the apical 

compartment for localized cell shape changes. Dev Cell 

18

, 64-76.  

47. 

Nagaraj, R., and Adler, P.N. (2012). Dusky-like functions as a Rab11 effector for the 

deposition of cuticle during 

Drosophila

 bristle development. Development 

139

, 906-916.  

48. 

Adler, P.N., Sobala, L.F., Thom, D., and Nagaraj, R. (2013). 

dusky-like

 is required to 

maintain the integrity and planar cell polarity of hairs during the development of the 

Drosophila 

wing. Dev Biol 

379

, 76-91.  

49. 

Wilkin, M.B., Becker, M.N., Mulvey, D., Phan, I., Chao, A., Cooper, K., Chung, H.J., 

Campbell, I.D., Baron, M., and MacIntyre, R. (2000). 

Drosophila

 Dumpy is a gigantic 

extracellular protein required to maintain tension at epidermal-cuticle attachment sites. 

Curr Biol 

10

, 559-567.  

50. 

Wernet, M.F., Labhart, T., Baumann, F., Mazzoni, E.O., Pichaud, F., and Desplan, C. 

(2003). Homothorax switches function of 

Drosophila

 photoreceptors from color to 

polarized light sensors. Cell 

115

, 267-279.  

51. 

Graveley, B.R., Brooks, A.N., Carlson, J.W., Duff, M.O., Landolin, J.M., Yang, L., 

Artieri, C.G., van Baren, M.J., Boley, N., Booth, B.W., et al. (2011). The developmental 

transcriptome of 

Drosophila melanogaster

. Nature 

471

, 473-479.  

52. 

Polesello, C., Delon, I., Valenti, P., Ferrer, P., and Payre, F. (2002). Dmoesin controls 

actin-based cell shape and polarity during 

Drosophila melanogaster

 oogenesis. Nat Cell 

Biol 

4

, 782-789.  

53. 

Vasquez, C.G., Tworoger, M., and Martin, A.C. (2014). Dynamic myosin phosphorylation 

regulates contractile pulses and tissue integrity during epithelial morphogenesis. J Cell 

Biol 

206

, 435-450.  

54. 

Zhang, L., and Ward, R.E.t. (2011). Distinct tissue distributions and subcellular 

localizations of differently phosphorylated forms of the myosin regulatory light chain in 

Drosophila

. Gene Expr Patterns 

11

, 93-104.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

37 

55. 

Deng, H., Wang, W., Yu, J.Z., Zheng, Y.G., Qing, Y., and Pan, D.J. (2015). Spectrin 

regulates Hippo signaling by modulating cortical actomyosin activity. eLife 

4

, e06567. 

56. 

Levayer, R., and Lecuit, T. (2012). Biomechanical regulation of contractility: spatial 

control and dynamics. Trends Cell Biol 

22

, 61-81.  

57. 

Krueger, D., Cartes, C.P., Makaske, T., and De Renzis, S. (2020). beta H-spectrin is 

required for ratcheting apical pulsatile constrictions during tissue invagination. EMBO 

Rep 

21

, e49858. 

58. 

Blackie, L., Walther, R.F., Staddon, M.F., Banerjee, S., and Pichaud, F. (2020). Cell-type-

specific mechanical response and myosin dynamics during retinal lens development in 

Drosophila

. Mol Biol Cell 

31

, 1355-1369.  

59. 

Kojima, S.I., Mishima, M., Mabuchi, I., and Hotta, Y. (1996). A single 

Drosophila 

melanogaster 

myosin light chain kinase

 gene produces multiple isoforms whose activities 

are differently regulated. Genes Cells 

1

, 855-871.  

60. 

Kim, Y.S., Fritz, J.L., Seneviratne, A.K., and VanBerkum, M.F.A. (2002). Constitutively 

active myosin light chain kinase alters axon guidance decisions in 

Drosophila

 embryos. 

Dev Biol 

249

, 367-381.  

61. 

Jiao, R., Daube, M., Duan, H., Zou, Y., Frei, E., and Noll, M. (2001). Headless flies 

generated by developmental pathway interference. Development 

128

, 3307-3319. 

62. 

Itakura, Y., Inagaki, S., Wada, H., and Hayashi, S. (2018). Trynity controls epidermal 

barrier function and respiratory tube maturation in 

Drosophila

 by modulating apical 

extracellular matrix nano-patterning. PLoS One 

13,

 e0209058. 

63. 

Hou, J., Aydemir, B.E., and Dumanli, A.G. (2021). Understanding the structural diversity 

of chitins as a versatile biomaterial. Philos Trans A Math Phys Eng Sci 

379

, 20200331.  

64. 

Tiklova, K., Tsarouhas, V., and Samakovlis, C. (2013). Control of airway tube diameter 

and integrity by secreted chitin-binding proteins in 

Drosophila

. PLoS One 

8

, e67415. 

65. 

Drees, L., Konigsmann, T., Jaspers, M.H.J., Pflanz, R., Riedel, D., and Schuh, R. (2019). 

Conserved function of the matriptase-prostasin proteolytic cascade during epithelial 

morphogenesis. PLoS Genet 

15

, e1007882.  

66. 

Drees, L., Schneider, S., Riedel, D., Schuh, R., and Behr, M. (2023). The proteolysis of 

ZP proteins is essential to control cell membrane structure and integrity of developing 

tracheal tubes in 

Drosophila

. eLife 

12

, e91079. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

38 

67. 

Gueta, R., Levitt, J., Xia, A., Katz, O., Oghalai, J.S., and Rousso, I. (2011). Structural and 

mechanical analysis of tectorial membrane 

Tecta

 mutants. Biophys J 

100

, 2530-2538.  

68. 

Larson, D.E., Johnson, R.I., Swat, M., Cordero, J.B., Glazier, J.A., and Cagan, R.L. 

(2010). Computer simulation of cellular patterning within the 

Drosophila

 pupal eye. 

PLoS Comput Biol 

6

, e1000841.  

69. 

Kim, D.K., Kim, J.A., Park, J., Niazi, A., Almishaal, A., and Park, S. (2019). The release 

of surface-anchored alpha-tectorin, an apical extracellular matrix protein, mediates 

tectorial membrane organization. Sci Adv 

5

, eaay6300.  

70. 

Kelley, M., Yochem, J., Krieg, M., Calixto, A., Heiman, M.G., Kuzmanov, A., Meli, V., 

Chalfie, M., Goodman, M.B., Shaham, S., et al. (2015). FBN-1, a fibrillin-related protein, 

is required for resistance of the epidermis to mechanical deformation during 

C. elegans 

embryogenesis. eLife 

4

, e06565. 

71. 

Fan, L., Kovacevic, I., Heiman, M.G., and Bao, Z. (2019). A multicellular rosette-

mediated collective dendrite extension. eLife 

8

, e38065. 

72. 

Roch, F., Alonso, C.R., and Akam, M. (2003). 

Drosophila miniature

 and 

dusky

 encode ZP 

proteins required for cytoskeletal reorganisation during wing morphogenesis. J Cell Sci 

116

, 1199-1207.  

73. 

Vuong-Brender, T.T.K., Suman, S.K., and Labouesse, M. (2017). The apical ECM 

preserves embryonic integrity and distributes mechanical stress during morphogenesis. 

Development 

144

, 4336-4349.  

74. 

Gao, X.B., Eladari, D., Leviel, F., Tew, B.Y., Miro-Julia, C., Cheema, F., Miller, L., 

Nelson, R., Paunescu, T.G., McKee, M., et al. (2010). Deletion of hensin/DMBT1 blocks 

conversion of beta- to alpha-intercalated cells and induces distal renal tubular acidosis. 

Proc Natl Acad Sci USA 

107

, 21872-21877.  

75. 

Pulido Companys, P., Norris, A., and Bischoff, M. (2020). Coordination of cytoskeletal 

dynamics and cell behaviour during 

Drosophila

 abdominal morphogenesis. J Cell Sci 

133

, jcs.235325. 

76. 

Jazwinska, A., and Affolter, M. (2004). A family of genes encoding Zona Pellucida (ZP) 

domain proteins is expressed in various epithelial tissues during 

Drosophila 

embryogenesis. Gene Expr Patterns 

4

, 413-421.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint 

2024.01.17.575959v1.full-html.html
background image

 

39 

77. 

Dong, B., Hannezo, E., and Hayashi, S. (2014). Balance between apical membrane 

growth and luminal matrix resistance determines epithelial tubule shape. Cell Rep 

7

, 941-

950.  

78. 

Sobala, L.F., and Adler, P.N. (2016). The gene expression program for the formation of 

wing cuticle in 

Drosophila

. PLoS Genet 

12

, e1006100. 

79. 

Kryuchkov, M., Bilousov, O., Lehmann, J., Fiebig, M., and Katanaev, V.L. (2020). 

Reverse and forward engineering of 

Drosophila

 corneal nanocoatings. Nature 

585

, 383-

389.  

80. 

Kim, E., Choi, Y., Lee, S., Seo, Y., Yoon, J., and Baek, K. (2008). Characterization of the 

Drosophila melanogaster retinin

 gene encoding a cornea-specific protein. Insect Mol 

Biol 

17

, 537-543.  

81. 

Yoshihara, M., Ohmiya, H., Hara, S., Kawasaki, S., consortium, F., Hayashizaki, Y., Itoh, 

M., Kawaji, H., Tsujikawa, M., and Nishida, K. (2015). Discovery of molecular markers 

to discriminate corneal endothelial cells in the human body. PLoS One 

10

, e0117581.  

82. 

Zhang, R., Li, B., and Li, H. (2023). Extracellular matrix mechanics regulate the ocular 

physiological and pathological activities. J Ophthalmol 

2023

, 7626920.  

83. 

Foster, J.W., Jones, R.R., Bippes, C.A., Gouveia, R.M., and Connon, C.J. (2014). 

Differential nuclear expression of Yap in basal epithelial cells across the cornea and 

substrates of differing stiffness. Exp Eye Res 

127

, 37-41.  

84. 

Pogodalla, N., Kranenburg, H., Rey, S., Rodrigues, S., Cardona, A., and Klambt, C. 

(2021). Drosophila beta(Heavy)-Spectrin is required in polarized ensheathing glia that 

form a diffusion-barrier around the neuropil. Nat Commun 

12

, 6357.  

85. 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., 

Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source 

platform for biological-image analysis. Nat Methods 

9

, 676-682. 1 

86. 

Hess, M.W., Pfaller, K., Hampolz, B., Longato, S., Teis, D., Florl, A., Gutleben, K., and 

Huber, L.A. (2006). Microscopy of the 

Drosophila

 facet eye: vademecum for 

standardized fixation, embedding, and sectioning. Microsc Res Tech 

69

, 93-98.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint

this version posted January 20, 2024. 

https://doi.org/10.1101/2024.01.17.575959

doi: 

bioRxiv preprint