background image

Journal Pre-proof

Control of odor sensation by light and cryptochrome in the Drosophila antenna

Dhananjay Thakur, Sydney Hunt, Tiffany Tsou, Miles Petty, Jason M. Rodriguez,

Craig Montell

PII:

S2589-0042(25)00704-7

DOI:

https://doi.org/10.1016/j.isci.2025.112443

Reference:

ISCI 112443

To appear in:

ISCIENCE

Received Date: 12 December 2024
Revised Date: 14 February 2025
Accepted Date: 11 April 2025

Please cite this article as: Thakur, D., Hunt, S., Tsou, T., Petty, M., Rodriguez, J.M., Montell, C., Control

of odor sensation by light and cryptochrome in the Drosophila antenna, 

ISCIENCE

 (2025), doi: 

https://

doi.org/10.1016/j.isci.2025.112443

.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition

of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of

record. This version will undergo additional copyediting, typesetting and review before it is published

in its final form, but we are providing this version to give early visibility of the article. Please note that,

during the production process, errors may be discovered which could affect the content, and all legal

disclaimers that apply to the journal pertain.

© 2025 The Author(s). Published by Elsevier Inc.

1-s2.0-S2589004225007047-main-html.html
background image

UV light

Fly under dark conditions

olfactory sensillum 

on antenna

Strong avoidance to 

benzaldehyde odor

TRPA1 olfactory 

receptor neuron 

activated

ROS

support

cell

Fly exposed to UV light

Persistent TRPA1 

activation by ROS 

reduces antennal 

response to BA 

Reduced avoidance to 

benzaldehyde odor

ROS

(activated by BA)

Cry

TRPA1

Benzaldehyde (BA) 

odor

BA

BA

BA

TRPA1

Cry

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

 

  

Control of odor sensation by light and  

cryptochrome in the Drosophila antenna 

 

  

Dhananjay Thakur, Sydney Hunt, Tiffany Tsou,  

Miles Petty, Jason M. Rodriguez and Craig Montell*,** 

 

 

10 

Department of Molecular, Cellular, and Developmental Biology,  

11 

and the Neuroscience Research Institute,  

12 

University of California, Santa Barbara, Santa Barbara, CA 93106, USA 

13 

  

14 

*Corresponding author: Craig Montell  

15 

**Lead contact: Craig Montell 

16 

Email: 

cmontell@ucsb.edu

  

17 

 

18 

Keywords: 

Olfaction, smell, light, ultraviolet, reactive oxygen species, ROS, hydrogen 

19 

peroxide, H

2

O

2

, cryptochrome, TRPA1, olfactory receptor neurons, ORNs, olfactory 

20 

sensory neurons, OSNs, support cells

 

21 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

Abstract 

22 

Olfaction is employed by the fruit fly, 

Drosophila melanogaster

, to differentiate 

23 

safe from harmful foods and for other behaviors. Here, we show that ultraviolet (UV) or 

24 

blue light reduces the fl

y’s behavioral aversion, and the responses of olfactory receptor 

25 

neurons (ORNs) to certain repellent odors, such as benzaldehyde. We demonstrate that 

26 

cryptochrome

 (

cry

) is expressed in antennal support cells and is required for the light-

27 

dependent reduction in aversion. Light activation of Cry creates reactive oxygen species 

28 

(ROS), and ROS activates the TRPA1 channel. We found that TRPA1 is required in 

29 

ORNs for benzaldehyde repulsion and is activated 

in vitro

 by benzaldehyde. We 

30 

propose that light-activation of Cry and creation of ROS persistently stimulates and then 

31 

desensitizes TRPA1, preventing activation by benzaldehyde. Since flies begin feeding 

32 

at dawn, we suggest that the light-induced reduction in odor avoidance serves to lower 

33 

the barrier to feeding following the transition from night to day.

 

 

34 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

Introduction 

35 

Chemosensation includes the senses of taste and smell, and it is known that 

36 

taste is greatly influenced by multiple types of sensory stimuli. In humans, the 

37 

perception of sweetness and bitterness is affected by food temperature, food texture, 

38 

sound and external light.

1-8

 The receptor mechanisms underlying how these sensory 

39 

features impact taste have been characterized using model organisms, ranging from 

40 

flies

9-13

 to mice.

14

 In the case of olfaction, some people associate certain odors with 

41 

specific colors.

15,16

 

42 

In principle, environmental light could impact odor acuity or valence through 

43 

direct light reception by olfactory organs. To address this question, we elected to focus 

44 

on the fruit fly, 

Drosophila melanogaster

, since one of the olfactory organs, the antenna, 

45 

responds to multiple types of sensory inputs.

17

 While the 3

rd

 segment of the antenna 

46 

contains a high density of olfactory receptor neurons (ORNs), other parts of the 

47 

antennal 

structure, namely the Johnston’s organ and arista, are sensitive to stimuli such 

48 

as humidity

18-20

, sound

21

,

22

 wind

23

, gravity

24

, and changes in temperature.

25

 The 

49 

possible integration of odor detection with sensation of other physical parameters is 

50 

under active investigation. Smell acuity, for example, is known to be sensitive to 

51 

ambient temperature,

26,27

 and changes during the circadian rhythm.

28

  

52 

Drosophila

 antennae are situated on the dorsal surface of the fly and are known 

53 

to express photoreceptive proteins such as the ultraviolet (UV) and blue light sensitive 

54 

rhodopsins

29

, and cryptochrome (Cry).

30

 However, it is not known if the antennae sense 

55 

and respond directly to ambient light, or if light sensation by olfactory organs has an 

56 

impact on the odor response. Nevertheless, it has been documented that sensation of 

57 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

blue light by the 

Drosophila

 compound eyes can reduce the activity of a particular class 

58 

of olfactory receptor neurons that detect the male pheromone, cis-vaccenyl acetate.

31

  

59 

Here, we discovered that ambient, short-wavelength light reduces the aversion to 

60 

multiple odorants, such as the noxious odorant, benzaldehyde. The light is detected 

61 

directly by olfactory sensilla in the antenna, and this depends on Cry, which is 

62 

expressed in central pacemaker neurons in the brain, where it contributes to light-

63 

entrainment of circadian rhythms.

32-35

 Surprisingly, we found that Cry is required in 

64 

support cells rather than ORNs in the sensilla. Our work supports the model that light 

65 

activation of Cry results in induction of reactive oxygen species, which causes persistent 

66 

activation and subsequent refractoriness of the TRPA1 channel in ORNs to 

67 

responsiveness to benzaldehyde. This work highlights a role for light in modifying the 

68 

olfactory response, which does so through light reception in a new class of light 

69 

responsive cells present in an olfactory organ. 

70 

 

71 

Results 

72 

DART2 assay for olfactory avoidance of repellents 

73 

To assay whether olfactory sensation in 

Drosophila

 is impacted by light, we 

74 

modified a two-way choice assay (direct airborne repellent test, DART)

36

 consisting of a 

75 

tube capped at one end with a repellent and the solvent that was used to solubilize and 

76 

dilute the repellent at the other end with lights directed from above (Figure 1A). To 

77 

ensure that there was no contact between the flies and the chemicals during the assay, 

78 

the caps included meshed chambers, creating a separation of 8 mm between the flies 

79 

and the chemicals. We transferred flies to the tube, allowed them to acclimate for 20 

80 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

minutes without any odorants, added the odorants, and then recorded their positions 

81 

over the course of 60 minutes. To optimize the assay, we first focused on characterizing 

82 

olfactory behavior in the dark under near-infrared illumination with a video camera 

83 

(Figure 1A).  

84 

We tracked the responses of the flies by calculating the transverse component of 

85 

their center of mass (CoM) per frame and normalizing it to the length of the tube. We 

86 

found that the CoM provided the most precise quantitative alignment with the visually 

87 

observed distribution of flies in the assay tube. The most extreme avoidance or 

88 

attraction to a chemical, as seen when the flies cluster at one end or the other (Figure 

89 

S1A), produces a CoM of 1.0 or 0 (Figure S1B). If the flies distributed homogeneously 

90 

throughout the tube (Figure S1A), this would indicate neither aversion nor attraction to 

91 

the chemical and result in a CoM of 0.5 (Figure S1B). Other sample distributions 

92 

indicating less than the most severe repulsion (e.g. right bias, right cluster or slight right 

93 

bias; Figure S1A) produce CoM >0.5 

– <1.0 (Figure S1B), while less than the most 

94 

severe attraction (e.g. left bias, left cluster or slight left bias; Figure S1A), result in CoM 

95 

>0 

– <0.5 (Figure S1B). In contrast to the CoM metric, measuring the position of the 

96 

flies in terms of avoidance index (Figure S1C) could not discriminate between subtle 

97 

differences in the distribution of the flies within the tubes. Therefore, we used CoM as 

98 

the measure of odor responses throughout this study. 

99 

Benzaldehyde (BA) is a naturally occurring compound synthesized in plants, 

100 

which is a repellent odorant to 

Drosophila

.

37

 However, it is not sensed exclusively 

101 

through olfaction since removal of the olfactory organs significantly reduces but does 

102 

not eliminate BA avoidance.

38

 Using DART2 assays, we found that the flies were 

103 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

indifferent to 0.1% or 0.5% BA, while increasing the BA to just 1% elicited strong 

104 

avoidance (Figure S1D). Elevating the BA to 10% caused extreme avoidance, with the 

105 

flies clustering near the right side of the DART2 tube (Figure S1D). 

106 

In order to calibrate the variability of the response as a function of the number of 

107 

flies in the DART2 assay, we tested the avoidance to 1% BA with different numbers of 

108 

flies ranging from 1 to 64. We found that there was considerable variation in the 

109 

response over time if the assays included only 1, 2, or 4 flies (Figures 1B

–E). In close 

110 

concordance with previous work that shows that collective behavior produces more 

111 

robust responses to aversive cues,

39

 we found that increasing the number of flies in the 

112 

assay (≥8) resulted in less variability in the BA response (Figures 1B and F–I). In 

113 

assays with 8 and 16 flies, the CoM moved increasingly away from BA over the first 20 

114 

minutes, reaching a steady-state of aversion that was maintained for the remainder of 

115 

the 60-minute-long assay (Figures 1F and G). Including greater numbers of flies in the 

116 

assay (32 or 64) caused slight decreases in the average CoM relative to the assays with 

117 

16 (Figures 1H and I) as some of the flies were forced into the side of the tube closer to 

118 

the repellent due to overcrowding. In order to obtain minimal variance and maximum 

119 

effect size (Figure 1B), we elected to use 8-16 flies per tube for the remaining analyses. 

120 

Next we tested whether there was sexual dimorphism in the response to BA. We found 

121 

that the responses were indistinguishable when we tested males only, females only, or 

122 

a mix of both sexes (Figure S1E). Therefore, we used a mix of males and females in 

123 

each tube for all further analyses. 

124 

 

125 

UV and blue illumination reduce aversion to benzaldehyde 

126 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

To address whether exposure to light impacted the responses to BA, we 

127 

performed DART2 assays while exposing flies to ‘white light’ illumination, which 

128 

consisted of a combination of red, green, blue and UV LEDs each at an intensity of 

129 

~100 μW/cm

2

. We found that in the presence of white light, the avoidance of 1% BA 

130 

was significantly reduced (Figure 2A). We then tested the impact of different 

131 

wavelengths of light and found that ultraviolet light (UV; 365 nm) or blue light (450 nm), 

132 

but not green light (520 nm) or red light (625 nm), suppressed the repulsion to BA 

133 

relative to that they exhibited in the dark (Figure 2B). The aversion was decreased 

134 

significantly when the flies were exposed to ≥20 μW/cm

of UV or ≥18 μW/cm

blue 

135 

illumination (Figures 2C and D). We assayed the impact of 100 μW/cm

UV light on 

136 

repulsion by different concentrations of BA ranging from 0.1

–10%. While the response 

137 

to 1.0% benzaldehyde was suppressed by UV, there were no effects of UV on lower BA 

138 

levels (0.1% and 0.5%), and the highest concentration of BA (10%) was so aversive 

139 

(CoM = 0.93 ±0.01) that the UV light had no impact (Figure 2E).  

140 

To determine if UV light modified the responses to other odorants, we tested 

141 

AITC (allyl isothiocyanate), which is a potent noxious odorant to flies,

40

 citronellal, which 

142 

is a previously described repellent,

36

 isovaleric acid (a product of fermentation) and 

143 

lemongrass, a widely used insect repellent.

41

 To conduct these experiments, for each 

144 

repellent, we first established a concentration of the odorant that produces a significant 

145 

effect in the dark, but does not cause a ceiling effect (CoM ~0.65-0.8).

 

As controls, we 

146 

also included propionic acid (a constituent of fly food), and limonene (a neutral odor). 

147 

The responses of the flies were not significantly different under UV and dark conditions 

148 

to propionic acid, limonene, AITC, and citronellal (Figure 2F). However, similar to 

149 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

benzaldehyde, the aversion was significantly reduced when flies were tested with 

150 

isovaleric acid and lemongrass (Figure 2F). 

151 

  

152 

ORN responses are suppressed by light, via a rhodopsin independent mechanism 

153 

To test if light directly modulates the response of the ORNs, we performed 

154 

electroantennograms (EAGs), which are field recordings performed by placing a 

155 

recording electrode on the antenna. We exposed flies to 1% BA either in the dark or 

156 

during 5 minutes of blue light. Upon exposure to blue light, the response to BA was 

157 

attenuated to 41.6 ±6.2% of the response in the dark (Figures 3A and B), showing that 

158 

light affects ORN activity in the antenna. These results raise the possibility that there is 

159 

a light sensor in the antenna that serves to modulate the olfactory response. 

160 

The main light receptors are rhodopsins, which initiate phototransduction 

161 

cascades.

17

 To address whether a rhodopsin is required for suppressing the repulsion 

162 

to BA, we tested the requirements for rhodopsins that are activated by UV light. Flies 

163 

encode seven rhodopsins, four of which are effectively activated by UV light (Rh1, Rh3, 

164 

Rh4, and Rh7).

42-45

 Six of the rhodopsins (Rh1-Rh6) engage a trimeric G-protein that 

165 

couples to a phospholipase C

β

 (PLC) encoded by the 

norpA

 gene,

17

 while Rh7 

166 

signaling is mediated through PLC21C.

43

 We found that flies lacking 

norpA

 showed 

167 

similar aversion to BA under UV light as control flies (Figure 3C), indicating that 

168 

rhodopsins that engage this G-protein-activated phospholipase C

β

 are not the receptors 

169 

enabling the light-dependent suppression of BA repulsion. Consistent with this finding, 

170 

mutations affecting 

rh1

 (

ninaE

), 

rh3

 or 

rh4

 did not alter the impact of light on the 

171 

aversion to BA (Figure 3C). In contrast, flies lacking 

rh7

 showed no difference in 

172 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

aversion between dark and UV conditions, although the overall responses for one of two 

173 

alleles tested (

rh7

L

) was slightly lower than exhibited by control flies (Figure 3C). 

174 

However, we did not detect 

rh7

-promoter-driven GFP staining in the antenna (Figure 

175 

S2), suggesting that the effect of this light sensor in modifying the ORN response to BA 

176 

is independent of the antenna.  

177 

 

178 

Cryptochrome required for UV and blue light suppression of olfactory avoidance

 

179 

Cryptochrome (Cry), which detects UV/blue light in 

Drosophila

 central pacemaker 

180 

neurons in the brain,

46,47

 is also expressed in the antenna.

30

 Therefore, Cry is an 

181 

excellent candidate sensor for functioning in the light-dependent modification of the 

182 

response to BA in the antenna. We discovered that a null mutation in 

cry

 (

cry

01

183 

eliminated the suppression of the olfactory avoidance to BA by UV or blue light (Figure 

184 

3D). We observed a similar phenotype when we placed the 

cry

01

 mutation

 in trans

 with 

185 

a deficiency that uncovered the 

cry

 locus indicating that the phenotype is due to 

cry

01

 

186 

rather than a background mutation (Figure 3D). Thus, we conclude that Cry is required 

187 

for the UV- and blue-induced suppression of BA repulsion. 

188 

  

To determine whether 

cry

 impacts the electrical response to BA in the antenna, 

189 

we performed EAGs. As mentioned above, light suppressed the BA response in wild-

190 

type antennas significantly (Figures 3A and B). In contrast, 

cry

01

 flies still exhibited a 

191 

robust BA response under blue light (Figures 3E and F), although there was a relatively 

192 

small reduction in the peak EAG amplitude, which was not significant (81.5 ±8.4% of the 

193 

peak in the dark). Thus, these data indicate that 

cry

 provides a large fraction of the 

194 

inhibition in odor response by light in the antenna.  

195 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

  

196 

cry is expressed and required in non-neuronal cells in olfactory sensilla 

197 

The two main olfactory organs are the bilaterally symmetrical 3

rd

 antennal 

198 

segments and the maxillary palps.

17

 These organs are decorated with bristles, referred 

199 

to as olfactory sensilla, which harbor one to four ORNs, and three types of accessory 

200 

cells. These include the trichogen (shaft), tormogen (socket), and thecogen (sheath).

48

 

201 

To visualize the cells that express 

cry

, we took advantage of a 

cry

 reporter (

cry-GAL4

)

49

 

 

202 

to drive expression of 

UAS-mCD8::GFP

. The reporter stained cells in both the 3

rd

 

203 

antennal segment and the maxillary palp (Figures 4 and S3).  

204 

Cry is expressed in central pacemaker neurons,

32,34,50

 suggesting that in olfactory 

205 

organs it may also be expressed in neurons. To address whether 

cry 

is expressed in 

206 

ORNs, we performed double-labeling experiments using the 

cry

-

GAL4

 in combination 

207 

with a marker specific for ORNs, 

orco-RFP, 

which expresses 

RFP

 under control of the 

208 

orco

 promoter.

51

 Surprisingly, we did not detect co-staining with the 

orco-RFP

 either in 

209 

the antenna (Figures 4A

–D) or in the maxillary palp (Figures S3A–D). Moreover, there 

210 

were no 

cry

-positive axonal processes extending into any glomeruli in the antennal 

211 

lobes in the brain (Figures S3E

–G). Together, these data indicate that the 

cry

 reporter is 

212 

not expressed in ORNs. To address whether Cry is expressed in support cells, we took 

213 

advantage of the GFP::Cry fusion protein,

52

 which stained the same set of cells as the 

214 

cry-GAL4

 (Figure S3H

–J). We found that nearly all of the GFP::Cry positive cells in the 

215 

antenna and maxillary palps were also stained with the 

lush-GAL4 

(Figures 4E

–G

 

and

 

216 

S3K

–M), which labels a large population of support cells throughout the antenna. These 

217 

experimental observations align well with our analysis of transcript data from the 

218 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

10 

 

FlyCellAtlas that is consistent with 

cry 

expression in support cells in olfactory sensilla 

219 

(Figures S4A

–F).  

220 

To identify the types of support cells that express 

cry

, we used 

GAL4

s to drive 

221 

expression in tormogen cells (

ase5

), thecogen cells (

nompA

), and glia

 

(

repo

). 

222 

Consistent with the extensive overlap of the 

cry

 and 

lush 

reporters, we found that the 

223 

GFP::Cry showed considerable overlap with all three cell types (Figures S4G

–O). To 

224 

determine whether 

cry

 is sufficient in olfactory support cells, we performed rescue 

225 

experiments using the 

UAS-cry

 and the 

lush-GAL4

, and found that this recapitulated the 

226 

reduced aversion to BA in the presence of UV light (Figure 5A).  

227 

  

228 

Role of reactive oxygen species in modulating odor response 

229 

The surprising finding that Cry expression

 

in support cells is sufficient for UV-

230 

induced suppression of BA repulsion raises the question as to the underlying 

231 

mechanism. One possibility is that Cry in support cells leads to release of a diffusible 

232 

product that impacts ORN function. Activation of Cry by short-wavelength light changes 

233 

the oxidative state of the flavin FADH that is bound to Cry, resulting in the production of 

234 

reactive oxygen species (ROS).

53

 The ROS could in principle affect the activity of the 

235 

ORNs. 

236 

To test whether activation of Cry by UV light increases production of ROS in the 

237 

antennae, we used the ROS sensor, 2′,7′-dichlorofluorescein diacetate

 (

DCFDA), as 

238 

described previously.

53

 We found that when we surgically removed antennae from 

239 

control flies and incubated them with DCFDA, they showed a significant increase in 

240 

fluorescence response after 1 second of UV exposure (Figures 5B, and S5). In contrast, 

241 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

11 

 

the response was reduced in 

cry

01

 mutant antennae (Figures 5B and S5). The residual 

242 

fluorescence response was likely an effect of UV on other endogenous photosensitizers 

243 

in the tissue.

54,55

 To determine whether induction of oxidative stress in 

lush

- and 

cry

-

244 

expressing olfactory support cells is sufficient to reduce aversion to BA, we used the 

245 

lush-GAL4 

to express dual oxidase (

UAS-duox

), which encodes a protein that 

246 

generates hydrogen peroxide. We found that this was sufficient to attenuate the 

247 

repulsion to BA in the dark (Figure 5C).  

248 

  

249 

TRPA1-C is required for avoidance to benzaldehyde 

250 

The observation that 

cry

 is required for UV-induced ROS production in the 

251 

antenna raises the question as to the molecular target for the ROS. ROS including 

252 

H

2

O

2

, which are produced by UV light, activate 

Drosophila

 TRPA1

56,57

 and we have 

253 

demonstrated previously that a 

trpA1

 reporter is expressed in ORNs in the 3

rd

 antennal 

254 

segment.

36

 The 

trpA1

 gene is expressed as four primary isoforms (A-D).

36,58-60

 Both 

255 

trpA1-A

 and 

trpA1-B

 use one promoter, and 

trpA1-C

 and 

trpA1-D

 share an alternative 

256 

promoter. To address which isoform-pair is expressed in ORNs, we used 

GAL4

 lines 

257 

that we previously created that are specific to the 

AB

 isoforms (

trpA1-AB

GAL4

) and the 

258 

CD

 isoforms (

trpA1-CD

GAL4

).

61

 The axons of ORNs extend into different glomeruli in the 

259 

olfactory lobes. Thus, using 

UAS-mCD8::GFP

, which labels the cell surfaces of cell 

260 

bodies and neuronal processes, we could determine which driver is expressed in ORNs 

261 

by examining labeling of the 58 glomeruli in each olfactory lobe.

62-65

 Using the 

trpA1-

 

262 

AB

-

GAL4

, we did not detect significant staining of olfactory glomeruli (Figure 6A). In 

263 

contrast, the 

trpA1-CD-GAL4

 

labeled ≥13 glomeruli in each lobe (Figures 6B and S6). 

264 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

12 

 

To determine whether the 

trpA1-C

 or the

 trpA1-D

 isoform is predominantly expressed in 

265 

ORNs we employed the 

trpA1-C-T2A-GAL4

 and

 trpA1-D-T2A-GAL4

s.

60

 We detected 

266 

significant staining in the antennal lobe driven by the 

trpA1-C-T2A-GAL4

 but

 

not by the 

267 

trpA1-D-T2A-GAL4 

(Figures 6C and D).  

268 

Due to the observation that the 

trpA1-C

 reporter is expressed in ORNs, we set 

269 

out to determine whether the 

trpA1-C

 isoform is sufficient for BA avoidance using two 

270 

lines of flies. First, we analyzed

 trpA1-C

 knockin flies (

trpA1-C-KI

),

60

 which express 

271 

trpA1-C 

in the absence of any other isoform, and found that the

 trpA1-C-KI

 flies 

272 

exhibited BA avoidance similar to control flies (Figure 7A). In addition, we performed 

273 

rescue experiments by expressing either the 

UAS-trpA1-C

 or the 

UAS-trpA1-D

 

274 

transgene in a 

trpA1

1

 null mutant background under control of the 

trpA1-CD-GAL4

275 

Expression of 

trpA1-C

 rescued the 

trpA1

 mutant phenotype, while there was only a 

276 

small effect of expressing the 

trpA1-D

 isoform, which was not significant (Figure 7B). 

277 

Furthermore, when we inactivated 

trpA1-C

 ORNs by expressing an inwardly rectifying 

278 

K

+

 channel (

UAS-kir2.1

) under control of a 

trpA1-C-T2A-GAL4

, the repulsion to 1% BA 

279 

was reduced significantly (Figure 7C).  

280 

To determine whether TRPA1-C is directly activated by BA, we expressed 

281 

TRPA1-C in an insect cell line (S2 cells) and performed whole-cell recordings. We 

282 

applied BA dissolved in the extracellular bath solution, and terminated each recording 

283 

with an activator of TRPA1 channels, allyl isothiocyanate (AITC).

66-68

 We found that BA 

284 

activated TRPA1-C with an average current of 389.1 ±132.6 pA (Figures 7D and F). The 

285 

TRPA1-D isoform was also activated by BA, but the peak current was much smaller 

286 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

13 

 

(128.1 ±39.1 pA; Figures 7E and F). Therefore, we conclude that the TRPA1-C channel 

287 

is critical for conferring repulsion to BA.  

288 

Next, we asked whether exposing cells expressing TRPA1-C to H

2

O

2

 would 

289 

prevent TRPA1-

C from being activated by BA. We found that 100 μM H

2

O

2

 robustly 

290 

activated TRPA1-C-dependent currents (Figures 7G-I). When we applied BA to the 

291 

same cells that had been exposed to H

2

O

2

 for 2 minutes, we found that BA did not 

292 

result in any further activation of TRPA1-C (Figures 7H-I).  

293 

 

294 

Discussion 

295 

We provide the first demonstration that light sensation in an olfactory organ 

296 

impacts odor detection. Specifically, we show that the flies’ avoidance of certain 

297 

botanically-derived chemicals, such as BA, IVA, and lemongrass is reduced in the 

298 

presence of light. Flies sleep to a greater extent at night than during the day, especially 

299 

compared to dawn and dusk. We suggest that the reduced avoidance in a light 

300 

environment results because the flies become more active, and need to begin to forage 

301 

after the onset of light.

69-72

 Therefore, the barrier to feeding may be much higher in the 

302 

dark, and should decrease in the light. Food options are complex mixtures of many 

303 

chemicals, some of which are attractive on their own, while others are aversive. 

304 

Therefore, in the light, when the barrier to feeding declines, we suggest that light 

305 

decreases the flies’ aversion to some repulsive volatile chemicals in a potential food, 

306 

thereby allowing them to land on the substrate and use contact chemosensation and 

307 

other senses to further evaluate the food. 

308 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

14 

 

Surprisingly, the mechanism for the light-induced reduction in olfactory avoidance 

309 

depends on light sensation in the antenna by Cry, which was originally identified due to 

310 

its role in light detection in circadian pacemaker neurons in the fly’s brain.

32-35

 Also, 

311 

unexpected is the observation that Cry functions in support cells in olfactory sensilla, 

312 

rather than in neurons. The finding that Cry is a light sensor in the antenna provides an 

313 

explanation for the salience of UV and blue light, rather than longer wavelengths, for 

314 

suppressing olfactory aversion, since Cry is activated by these shorter wavelengths.

46,47

 

315 

Moreover, this work indicates that support cells in olfactory sensilla function as a new 

316 

class of light sensitive cell.  

317 

Four rhodopsins (Rh1, Rh3, Rh4 and Rh7) sense short wavelength light.

42-45

 

318 

However, mutations disrupting the 

rh1

 (

ninaE

), 

rh3

 and 

rh4

 genes do not diminish the 

319 

suppression of olfactory repulsion by light. The Rh1, Rh3 and Rh4 rhodopsins couple to 

320 

a PLC

β

 encoded by the 

norpA

 locus, and consistent with the findings with these 

321 

mutants, a null mutation in 

norpA

 also does not reduce the light-induced suppression of 

322 

the BA repulsion. However, disruption of 

rh7

 does diminish the effect of light. 

323 

Nevertheless, we do not detect 

rh7

 reporter expression in the antenna, indicating that it 

324 

does not contribute to the effect of light on the olfactory response in the antenna.  

325 

A key question concerns the mechanism through which expression of Cry in 

326 

antennal support cells leads to suppression of olfactory avoidance in ORNs. It has been 

327 

shown previously that UV/blue light activation of Cry leads to ROS production,

53

 and 

328 

using a ROS sensor we found that short-wavelength light generated ROS in the 

329 

antenna, which was reduced in the 

cry

 mutant background. Conversely, expression of 

330 

DuOx in support cells, which promotes production of hydrogen peroxide, reduces BA 

331 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

15 

 

repulsion in the absence of UV/blue light. Of note, 

Drosophila

 TRPA1 is activated by 

332 

ROS,

56,57

 and we found that TRPA1-C is expressed in ORNs. Moreover, we showed 

333 

that TRPA1-C contributes to olfactory repulsion of BA, and is directly activated by BA. 

334 

We propose the model that ROS produced by light activation of Cry in support cells 

335 

leads to desensitization of TRPA1-C in ORNs, which in turn attenuates the aversion to 

336 

BA. These findings also highlight a role that support cells play in actively modulating the 

337 

response to an odor. Although we were not able to maintain our whole-cell recordings 

338 

sufficiently long to determine if H

2

O

2

 results in complete return to the baseline 

339 

(desensitization), we found that within a couple of minutes of H

2

O

2

 exposure, the current 

340 

began to decline, and was not enhanced upon application of BA.  

341 

 

342 

Limitation of the study 

343 

We discovered that light can modify olfactory reception and behavior, and this 

344 

occurs through direct light activation of cells in olfactory sensilla. We suggest that light is 

345 

detected by support cells in olfactory sensilla, since Cry is expressed and required in 

346 

these cells for modification of the olfactory response by light. Thus, in addition to 

cry

-

347 

dependent light sensing neurons in the central brain, 

Drosophila

 appears to be 

348 

equipped with 

cry

-dependent light-sensitive non-neuronal cells in olfactory sensilla. 

349 

Nevertheless, we did not provide electrophysiological evidence that support cells 

350 

respond to light. Moreover, since we used field recordings (EAGs) in this analysis, our 

351 

data do not discriminate between whether light causes fewer ORNs to respond to BA, or 

352 

simply lowers the spike frequency within a specific population. Single sensillum 

353 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

16 

 

recordings would not only be useful in addressing this question, but help clarify the 

354 

specific population of TRPC1-C-expressing ORNs that respond to BA. 

355 

While we show that Cry expression in the antenna is important for the UV and 

356 

blue light-induced suppression of the BA response, Rh7 also impacts the BA sensitivity. 

357 

Even though according to the FlyCellAtlas there may be 

rh7

 transcripts in antennal glia, 

358 

we did not detect 

rh7

 expression in the antenna, raising the question as to the tissue 

359 

where light activation of 

rh7

 suppresses BA responsiveness. 

rh7

 is expressed in the 

360 

brain, and at low levels compound eyes.

43,73-75

 Therefore, its contribution to the light-

361 

induced suppression of olfactory repulsion may reflect either a function in higher order 

362 

neurons in the brain, or light reception in the eyes. 

363 

According to our model, a simple prediction is that light would suppress the 

364 

repulsion to all aversive compounds that activate TRPA1-C. However, light did not 

365 

reduce the repulsion to AITC, even though it is a well-established activator of TRPA1 in 

366 

Drosophila

,

36,40

 and of homologs in other animals.

66-68

 This raises the possibility that 

367 

TRPA1-C is not the only receptor for AITC. Consistent with this possibility, repulsion of 

368 

volatile AITC depends on an odorant receptor, OR42a.

76

 Moreover, since volatile AITC 

369 

is highly toxic to 

Drosophila

,

76

 a reduction in repulsion to this chemical would reduce 

370 

survival, and so the observation that repulsion to AITC is not reduced by light is 

371 

consistent with a likely requirement to strongly avoid AITC at all times. Citronellal is a 

372 

relatively weak activator of 

Drosophila

 TRPA1, yet light does not attenuate the repulsion 

373 

to this chemical either. This may be because citronellal is also detected through 

374 

olfactory receptors (ORs).

36

 Benzaldehyde can also be sensed in part through ORs.

77

 

375 

We suggest that may account for our findings that the olfactory repulsion to BA is 

376 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

17 

 

reduced but not eliminated in the 

trpA1

 mutant, and that UV/blue light attenuates rather 

377 

than completely suppresses the olfactory repulsion to BA.  

378 

 

379 

RESOURCE AVAILABILITY 

380 

Lead contact 

381 

Inquiries should be directed to the lead contact, Craig Montell 

382 

(cmontell@ucsb.edu). 

383 

  

384 

Materials availability 

385 

No reagents were generated as part of this study. 

386 

  

387 

Data and Code availability 

388 

  All raw data and videos are available on Dryad: 

 

389 

https://doi.org/10.5061/dryad.ffbg79d5n. 

390 

  The codes (CoM_tracker.py and PI_tracker.py) are available on Dryad: 

 

391 

https://doi.org/10.5061/dryad.ffbg79d5n. 

392 

  The 3D printer files (Funnel.stl, Imaging-Chamber.stl, and Odorant-cap.stl) are 

393 

available on Dryad: 

 

https://doi.org/10.5061/dryad.ffbg79d5n. 

394 

 

395 

Acknowledgments 

396 

This work was supported by grants to C.M. from the National Institute on 

397 

Deafness and Other Communication Disorders (DC007864 and DC016278) and the 

398 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

18 

 

National Institute of Allergy and Infectious Diseases (AI165575). We thank Matthieu 

399 

Louis, Angela Bontempo and David Tadres for technical suggestions. 

400 

  

401 

Author contributions 

402 

D.T. and C.M. designed experiments. D.T. designed the DART2 assay and wrote 

403 

the code for the analysis. D.T., S.H., T.T., M.P., and J.M.R. performed behavioral 

404 

experiments. D.T. also performed the EAGs, immunohistochemistry, DCFDA imaging, 

405 

and the patch clamp experiments. D.T. and C.M. wrote the first draft and edited the 

406 

manuscript. 

407 

  

408 

Declaration of interests 

409 

The authors declare no competing interests. 

410 

  

411 

Declaration of generative ai and ai-assisted technologies 

412 

Neither generative AI nor AI-assisted technologies were used in the preparation 

413 

of this manuscript. 

414 

 

415 

STAR

Methods 

416 

KEY RESOURCES TABLE 

417 

Attached as KeyResourcesTable.docx 

418 

 

419 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 

420 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

19 

 

Flies were reared at 25 °C on normal cornmeal food under 12 hr light/12 hr dark 

421 

cycles. The control flies carried 

w

+

 and the 2

nd

 and 3

rd

 chromosomes were from 

w

1118

 

422 

(BDSC #5905). All mutants were outcrossed to 

w

1118

 for five generations. The following 

423 

lines were used (BDSC stock numbers): 

trpA1

1

 (26504), 

trpA1-AB

GAL4 

(67131), 

trpA1-

424 

CD

GAL4

 

(67133)

, cry-GAL4 

(24514),

 cry

Df

 

(27922)

, cry

01

,

79

 

orco-RFP

 (63045),

 orco-GAL4 

425 

(23292), 

ase5-GAL4 

(93029), 

nompA-GAL4 

(605353), 

repo-GAL4 

(7415),

 UAS-hDuOx

 

426 

(78412),

 UAS-Cry 

(86263), 

UAS-mCD8::GFP

 (5137), 

10xUAS-IVS-mCD8::RFP

,

 

427 

13xLexAop2-mCD8::GFP 

(32229), 

norpA

P24

(9048),

 ninaE

I17

(5701), 

rh3

2

,

10

 

rh4

1

,

78

 

rh7

1

,

43

 

428 

rh7

(rh7-LexA)

,

75

 

UAS-dsRed

.

80

 

Y. Xiang provided 

trpA1-KO, trpA1-C-KI, trpA1-C-T2A-

429 

GAL4 

and

 trpA1-D-T2A-GAL4

.

60

 

W. D. Tracey provided 

UAS-trpA1-C, UAS-trpA1-D

.

58

 

430 

D. Smith provided the 

lush-GAL4

.

81

 

431 

  

432 

METHOD DETAILS 

433 

Chemicals 

434 

The following were from Sigma-Aldrich: benzaldehyde (B1334), propionic acid 

435 

(81910), isovaleric acid (129542), citronellal (27470), AITC (W203408), and poly-L-

436 

ornithine (P4957). The sources of the following chemicals are as indicated: lemongrass 

437 

oil (Nature’s Alchemy Pure Essential Oils), R-limonene (Fluka, 62122), DMSO (JT 

438 

Baker, 67-68-5), and H2-DCFDA (Thermo Fisher Scientific, D399). 

439 

  

440 

DART2 assays 

441 

We constructed each assay tube by assembling one 150 mm-long Pyrex tube 

442 

(10 mm outer diameter, 1 mm wall 

Testing the impact of using 

ness) capped at either end 

443 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

20 

 

with an odorant carrying cap. The odorant carrying caps were designed using Microsoft 

444 

3D Builder and printed using a Formlabs II 3D printer and black resin (FLGPBK01). The 

445 

‘Odorant-cap.stl’ 3D printer file is available at Dryad: 

446 

https://doi.org/10.5061/dryad.ffbg79d5n. The caps were washed in isopropyl alcohol 

447 

for 1 hr., cured at 60 °C under violet light illumination in a Formlabs curing oven 

448 

(FormCure), washed with an odorless detergent (Alconox, Cat. no. 1104-1), followed by 

449 

a wash in ethanol, and then baked at 65 °C for 12-16 hours to remove residual odors. 

450 

To ensure that there was no contact-chemosensation in the assay, the cap had meshed 

451 

chambers to create an 8 mm-wide separation between the odorant and the flies in the 

452 

assay tube. 

453 

We reared all flies at 25 °C. To prepare the flies for the assays, we collected flies 1-3 

454 

days post-eclosion from culture vials using CO

2

, placed flies in individual vials 

455 

containing fresh food and allowed them to recover from the CO

2

 exposure for 48-72 

456 

hours. In preparation for the assay, the flies were transferred to each tube by attaching 

457 

a 3D-printed custom funnel on the Pyrex tube and tapping the flies into the tube. The 

458 

‘Funnel.stl’ 3D printer file is available at Dryad: 

459 

https://doi.org/10.5061/dryad.ffbg79d5n. We used Clear resin (Formlabs FLGPCL04) 

460 

to print the funnel as we found that builds made out of clear resin offered better impact-

461 

resistance. The flies were then distributed homogeneously in each tube by gently tilting 

462 

and tapping the tube. The flies were allowed to acclimatize in the tubes for 20 minutes. 

463 

5 μL of the solvent control and the test odor were added to filter paper rounds 

464 

(Whatman cat no. 1001-6508), and then placed in the external chambers of the odor 

465 

caps. The external chambers were then capped with lids broken off from 500 μL 

466 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

21 

 

Eppendorf tubes. The tubes were immediately placed in a test chamber, similar to a 

467 

previously described four field chamber,

82

 which we repurposed for these assays. The 

468 

test chamber was maintained at 23 °C, and the temperature was monitored using a 

469 

Thorlabs TSP-01 thermal probe. Flies were illuminated by an array of near infrared 

470 

LEDs. Fly locomotion was captured using a CCD camera equipped with a 850 nm cutoff 

471 

filter (Edmund Optics), at the rate of 1 frame/sec for 60 min.  

472 

The response to each odor was unique and therefore the time windows to pick 

473 

the average CoM were unique for every odor (Figure

 

S7) 

 propionic acid: 5 - 25 mins, 

474 

R-limonene: 0 - 60 mins, AITC: 20 - 60 mins, citronellal: 20 - 60 mins, isovaleric acid: 5 - 

475 

25 mins, lemongrass: 20 - 60 min. All odorants were dissolved in DMSO, with the 

476 

exception of propionic acid, which was dissolved in distilled H

2

O.  

477 

The odor caps and tubes were cleaned for reuse after every assay. The caps 

478 

and tubes were first soaked in distilled H

2

O saturated with Alconox odorless soap for 1 

479 

hour. The soap was then completely washed off, the caps and tubes were soaked in 

480 

50% ethanol for 1 hr, and washed in distilled H

2

O. The caps and tubes were then baked 

481 

for 20-24 hours at 65 °C. 

482 

Light intensities were measured with a Thorlabs PM100D power meter. LEDs 

483 

were mounted on heatsinks and placed above the assay tubes such that there was 

484 

near-uniform illumination of the entire tube length: UV (365 nm, 7021.365, Waveform 

485 

lighting), blue (450 nm; Samsung LM561C), green (530 nm, 7041.525, Waveform 

486 

lighting) and red (630 nm, 7041.630, Waveform lighting). T

he intensities measured at 

487 

either end of each tube were the same, while the intensity at the center of the tube was on 

488 

average ~10% lower than at either end of the tube. 

 The temperature inside the test 

489 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

22 

 

chamber was monitored using a Thorlabs TSP-01 probe and maintained by attaching a 

490 

24 V exhaust fan at the top of the enclosure. The test chamber was vented at the 

491 

bottom so that room air was able to flow in while stray light from the exterior was not 

492 

permitted in. 

493 

  

494 

Immunohistochemistry 

495 

For reporter labeling of tissue, we used 

UAS-GFP

UAS-RFP

 and 

LexAop-GFP

 

496 

expressed under control of the indicated 

GAL4

 and 

LexA

 drivers at 25 °C. Flies were 

497 

fixed in 4% paraformaldehyde (PF) in phosphate-buffered saline (PBS) for 30 minutes 

498 

at room temperature (RT, ~22 °C). The fixed animals were washed 6x with PBS 

499 

containing 0.3% Triton X-100 (PBS-T) at RT. Antennae and brains were dissected in 

500 

PBS-T. All tissue samples were washed 3x in PBS-T and blocked for 1 hr in PBS-T with 

501 

5% goat serum. The samples were incubated with primary antibodies diluted in blocking 

502 

solution for 48 hours at 4 °C: mouse nc82 (1:100, Developmental Study Hybridoma 

503 

Bank), chicken anti-GFP (1:1000, A-11122, Invitrogen), and rabbit anti-dsRed (1:1000, 

504 

632496, Clontech) or mouse anti-nc82 (DSHB). The samples were washed 3x for 20 

505 

min each in PBS-T and then incubated with secondary antibodies for 24 hrs at 4 °C: 

506 

Alexa Fluor 488 goat anti-chicken (1:200, A-11039, Invitrogen), and Alexa Fluor 568 

507 

goat anti-rabbit (1:200, A-11011, Invitrogen) or Alexa Fluor 568 goat anti-mouse (1:200, 

508 

A-11004, Invitrogen). The samples were washed 3x in PBS-T. Brain samples were 

509 

mounted with Vectashield mounting media (VectorLabs). Antenna and maxillary palp 

510 

samples were mounted in Rapiclear (Sunjin Lab). All samples were imaged on an LSM 

511 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

23 

 

700 or LSM 900 confocal microscope (Zeiss). Images were prepared using Zen2 (Zeiss) 

512 

or Fiji (ImageJ). 

513 

 

514 

Electroantennography (EAG recordings) 

515 

Flies were trapped in 200 μL tips and mounted under an inverted microscope 

516 

(Nikon Eclipse FN1). A steady stream of humidified air was applied over the flies. The 

517 

ground and recording electrode pipets were pulled using a Sutter P97 puller using 

518 

1B150F-3 borosilicate glass (Warner Instruments) to obtain a tip diameter that showed 

519 

a resistance of 0.5 - 1 MOhms. Both the recording and reference pipettes were filled 

520 

with electrolyte solution (108 mM NaCl, 4 mM NaHCO

3

, 1 mM NaH

2

PO

4

, 5 mM KCl, 2 

521 

mM CaCl

2

, 8.2 mM MgCl

2

, 5 mM HEPES, 10 mM sucrose, 5 mM trehalose). The pipet 

522 

tips were coated with conducting cream (Sigma Creme, AD Instruments). The reference 

523 

electrode was placed at the base of the antenna on the frons between the eyes, and the 

524 

recording electrode was placed at the tip of the antenna. 5 μL of each odorant was 

525 

applied to a filter paper round placed inside a 1 mL tip. Odor air puffs were applied for 

526 

500 ms through the 1 mL pipet tip positioned 1.5 cm from the fly, using a Syntech air 

527 

pump. The responses were recorded using EAGPro (Syntech Oeckenfels GmbH) at the 

528 

rate of 5kHz. We chose to perform EAG experiments with blue rather than UV light 

529 

since the EAGs were not within an enclosure. Consequently, the use of blue light 

530 

prevented exposing the experimenter to UV light. Moreover, our microscope lamp bulb 

531 

emission was low in the UV range. Blue light was applied through the objective of the 

532 

microscope using a 450 nm filter (Chroma Technology Corp.). To avoid adaptation to 

533 

the light stimulus we performed one trial per fly. For each trial, after recording the 

534 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

24 

 

response to benzaldehyde in the dark we allowed the fly to remain in the dark for 5 

535 

minutes to avoid adaptation to the odor, then applied blue light for 5 minutes before 

536 

applying benzaldehyde. For a few samples, the blue light stimulation was then switched 

537 

off and the preparation was allowed to recover in the dark for 5 minutes before applying 

538 

benzaldehyde in the dark. The application of benzaldehyde in the 2

nd

 dark-period 

539 

yielded EAG responses similar in amplitude to the response in the dark-period before 

540 

application of blue light, indicating that the antenna recovered its sensitivity to 

541 

benzaldehyde in the dark.  

542 

 

543 

DCFDA imaging 

544 

Antennae were dissected and placed in artificial hemolymph solution (AHLS) 

545 

inside a 3D printer imaging chamber printed using black resin (Formlabs, FLGPBK01) 

546 

(ImagingChamber.stl 3D printer file

https://doi.org/10.5061/dryad.ffbg79d5n). The 

547 

imaging chamber had a thin perforation at the bottom that allowed a single antenna to 

548 

be placed securely. Each antenna was then incubated for 45 min at RT with 2′,7′-

549 

dichlorofluorescein diacetate

 (

DCFDA) at a final concentration of 2 μM in AHLS, 

550 

washed 3x with ALHS, and imaged on a Zeiss LSM 900 confocal microscope. Baseline 

551 

fluorescence at 530 nm was recorded for 30 sec before application of the UV stimulus 

552 

(360 nm) by switching to the inbuilt DAPI filter in the LSM 900 for 1 sec. Following UV 

553 

stimulation, DCFDA fluorescence was recorded every 3 sec for 2 minutes, and the 

554 

steady-state peak fluorescence was used to compute the change in fluorescence from 

555 

the baseline reading. 

556 

  

557 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

25 

 

Patch-clamp electrophysiology 

558 

S2 cells were cultured at RT in Schneider’s 

Drosophila

 medium (21720, Gibco) 

559 

and transfected using either Lipofectamine 2000 (Invitrogen) or X-tremeGENE HP DNA 

560 

Transfection Reagent (Roche) with the control plasmid (pAc5.1) encoding 

GFP

 only, or 

561 

the plasmid encoding 

GFP

 and either 

trpA1-C

 or 

trpA1

-

D

. The transfected cells were 

562 

plated on poly-L-ornithine-coated 12 mm coverslips and assayed by whole-cell clamp 

563 

48 hours post-transfection. Drugs were dissolved in extracellular saline (140 mM NaCl, 

564 

5 mM KCl, 1 mM MgCl

2

, 2 mM CaCl

2

, 10 mM HEPES, 10 mM glucose), which was 

565 

buffered to pH 7.4 with NaOH and with an osmolarity adjusted to 300 mOsm with 

566 

mannitol. Cells were patched using borosilicate pipets (BF150-86-10, Sutter Instrument) 

567 

with a pipet resistance of 5-7 MOhms. The pipet solution contained 140 mM CsCl, 1 mM 

568 

MgCl

2

, 0.05 mM EGTA, 10 mM HEPES, which was buffered to pH 7.2 with CsOH and 

569 

with an osmolarity adjusted to 290 mOsm with mannitol. Both the extracellular and pipet 

570 

solutions were sterile filtered with 0.22 

μ

m sterile filters. Drugs were added to cells using 

571 

a gravity-driven perfusion system. Isolated cells were voltage-clamped in the whole-cell 

572 

mode using an Axon 200B amplifier and 1440A Digitizer (Molecular Devices). Currents 

573 

were recorded at 10 kHz. Cells were held at -60 mV with voltage ramps applied every 5 

574 

sec, which linearly increased from -80 to +80 mV within 200 ms to extract current vs. 

575 

voltage characteristics. To test for membrane resealing, a membrane test pulse of -10 

576 

mV was applied for 20 msec within each voltage-clamp cycle 100 msec before 

577 

application of the +80 to -80 mV voltage ramp. Cells that resealed were eliminated from 

578 

analysis. 

579 

 

580 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

26 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

581 

Fly movements were analyzed per-frame using a custom Python script. The 

582 

transverse components of the average position of the flies or the center of mass (CoM) 

583 

were calculated using CoM_tracker (

available as “CoM_tracker” at Dryad: 

584 

https://doi.org/10.5061/dryad.ffbg79d5n). The CoM per frame were calculated based 

585 

on the formula: CoM = Σm

n

*x

n

/(M*L). We defined the terms as follows: m, the pixel 

586 

count that crossed a preset brightness threshold to distinguish from the background in 

587 

each video; x, the lengthwise coordinate of each count; M, the total number of counts; L, 

588 

the length of the tube in pixels. 

589 

The avoidance index was calculated using PI_tracker (code is available at Dryad 

590 

as “PI_tracker”: https://doi.org/10.5061/dryad.ffbg79d5n). We bisected each tube. 

591 

Flies in the half of the tube that was nearest the solvent were considered to be repelled 

592 

by the odor. Flies in the half of the tube nearest the side with the test odor dissolved in 

593 

the solvent were considered to be attracted to the test odor.  The avoidance index per 

594 

frame was as follows: 

595 

A.I. = (Σflies in odorant side -  Σflies in solvent side)/Σall flies in tube.  Images were 

596 

captured at the rate of 1 frame/sec and the center of mass (CoM) of the flies was 

597 

analyzed at 1 frame/10 sec. The average CoM was obtained for the range of CoM 

598 

values per frame when the behavior response reached a maximum followed by an 

599 

approximately steady state. The number of flies used in each tube and the number of 

600 

experimental replicates are stated in the figure legend corresponding to each figure.  

601 

We used Mann-Whitney U test to compare means between two groups, and ANOVA 

602 

followed by Dunn’s multiple comparisons test when comparing means across more than 

603 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

27 

 

two groups. EAG responses were quantified as: amplitude of the peak response - mean 

604 

of baseline amplitude for 5 seconds preceding application of the odor puff, and 

605 

compared using paired Wilcoxon test. Recordings that showed no response (< 0.05 mV) 

606 

to odor application were excluded from analysis. DCFDA response was quantified as 

607 

steady state response after UV stimulation - steady-state baseline response. Voltage 

608 

clamp recordings from S2 cells were quantified as amplitude of the peak response - 

609 

mean of baseline amplitude for 5 seconds preceding application of the stimulus. Quality 

610 

of the whole-cell seal was monitored using a -10 mV step pulse applied every 5 s and 

611 

cells that showed re-sealing during the recording were excluded from analysis. Mean 

612 

response

s were compared using ANOVA followed by Dunn’s multiple comparison’s test. 

613 

Precise information about the analysis and statistical tests used in each panel can be 

614 

found in the corresponding figure legends. Unless otherwise indicated, in all figures, 

615 

error bars indicate mean ± SEMs. * p < 0.05. ** p < 0.01. *** p < 0.001. ns = not 

616 

significant.  

617 

 

618 

References 

619 

1. 

Spence, C. (2015). Eating with our ears: assessing the importance of the sounds 

620 

of consumption on our perception and enjoyment of multisensory flavour 

621 

experiences. Flavour 

4:3

622 

2. 

Hochenberger, R., and Ohla, K. (2019). A bittersweet symphony: Evidence for 

623 

taste-sound correspondences without effects on taste quality-specific perception. 

624 

J. Neurosci. Res. 

97

, 267-275. 10.1002/jnr.24308. 

625 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

28 

 

3. 

Tu, Y.J., Yang, Z., and Ma, C.Q. (2016). The taste of plate: how the spiciness of 

626 

food is affected by the color of the plate used to serve it. J. Sens. Stud. 

31

, 50-

627 

60. 10.1111/joss.12190. 

628 

4. 

Spence, C., Velasco, C., and Knoeferle, K. (2014). A large sample study on the 

629 

influence of the multisensory environment on the wine drinking experience. 

630 

Flavour 

3:8

631 

5. 

Oberfeld, D., Hecht, H., Allendorf, U., and Wickelmaier, F. (2009). Ambient 

632 

lighting modifies the flavor of wine. J. Sens. Stud. 

24

, 797-832. 10.1111/j.1745-

633 

459X.2009.00239.x. 

634 

6. 

Srivastava, S., Donaldson, L.F., Rai, D., Melichar, J.K., and Potokar, J. (2013). 

635 

Single bright light exposure decreases sweet taste threshold in healthy 

636 

volunteers. J. Psychopharm. 

27

, 921-929. Doi 10.1177/0269881113499206. 

637 

7. 

van der Heijden, K., Festjens, A., and Goukens, C. (2021). On the bright side: 

638 

The influence of brightness on overall taste intensity perception. Food Qual. 

639 

Prefer. 

88

. ARTN 104099 10.1016/j.foodqual.2020.104099. 

640 

8. 

Szczesniak, A.S. (2002). Texture is a sensory property. Food Qual. Prefer. 

13

641 

215-225. Pii S0950-3293(01)00039-8 Doi 10.1016/S0950-3293(01)00039-8. 

642 

9. 

Zhang, Y.V., Aikin, T.J., Li, Z., and Montell, C. (2016). The basis of food texture 

643 

sensation in 

Drosophila

. Neuron 

91

, 863-877. 10.1016/j.neuron.2016.07.013. 

644 

10. 

Li, Q., DeBeaubien, N.A., Sokabe, T., and Montell, C. (2020). Temperature and 

645 

sweet taste integration in 

Drosophila

. Curr. Biol. 

30

, 2051-2067 

646 

10.1016/j.cub.2020.04.084. 

647 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

29 

 

11. 

Li, Q., and Montell, C. (2021). Mechanism for food texture preference based on 

648 

grittiness. Curr. Biol. 

31

, 1850-1861. 10.1016/j.cub.2021.02.007. 

649 

12. 

Sánchez-Alcañiz, J.A., Zappia, G., Marion-Poll, F., and Benton, R. (2017). A 

650 

mechanosensory receptor required for food texture detection in 

Drosophila

. Nat 

651 

Commun 

8

, 14192. 10.1038/ncomms14192. 

652 

13. 

Jeong, Y.T., Oh, S.M., Shim, J., Seo, J.T., Kwon, J.Y., and Moon, S.J. (2016). 

653 

Mechanosensory neurons control sweet sensing in 

Drosophila

. Nat Commun 

7

654 

12872. 10.1038/ncomms12872. 

655 

14. 

Talavera, K., Yasumatsu, K., Voets, T., Droogmans, G., Shigemura, N., 

656 

Ninomiya, Y., Margolskee, R.F., and Nilius, B. (2005). Heat activation of TRPM5 

657 

underlies thermal sensitivity of sweet taste. Nature 

438

, 1022-1025. 

658 

15. 

Speed, L.J., de Valk, J., Croijmans, I., Huisman, J.L.A., and Majid, A. (2023). 

659 

Odor-color associations are not mediated by concurrent verbalization. Cogn. Sci. 

660 

47

, e13266. 10.1111/cogs.13266. 

661 

16. 

Tamura, K., and Okamoto, T. (2023). Odor descriptive ratings can predict some 

662 

odor-color associations in different color features of hue or lightness. PeerJ 

11

663 

e15251. 10.7717/peerj.15251. 

664 

17. 

Montell, C. (2021). 

Drosophila

 sensory receptors

—a set of molecular Swiss Army 

665 

Knives. Genetics 

217

, 1-34. 10.1093/genetics/iyaa011. 

666 

18. 

Enjin, A., Zaharieva, E.E., Frank, D.D., Mansourian, S., Suh, G.S., Gallio, M., 

667 

and Stensmyr, M.C. (2016). Humidity sensing in 

Drosophila

. Curr. Biol. 

26

, 1352-

668 

1358. 10.1016/j.cub.2016.03.049. 

669 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

30 

 

19. 

Knecht, Z.A., Silbering, A.F., Ni, L., Klein, M., Budelli, G., Bell, R., Abuin, L., 

670 

Ferrer, A.J., Samuel, A.D., Benton, R., and Garrity, P.A. (2016). Distinct 

671 

combinations of variant ionotropic glutamate receptors mediate thermosensation 

672 

and hygrosensation in 

Drosophila

. eLife 

5

, e17879. 10.7554/eLife.17879. 

673 

20. 

Knecht, Z.A., Silbering, A.F., Cruz, J., Yang, L., Croset, V., Benton, R., and 

674 

Garrity, P.A. (2017). Ionotropic Receptor-dependent moist and dry cells control 

675 

hygrosensation in 

Drosophila

. eLife 

6

, e26654. 10.7554/eLife.26654. 

676 

21. 

Eberl, D.F., Hardy, R.W., and Kernan, M.J. (2000). Genetically similar 

677 

transduction mechanisms for touch and hearing in 

Drosophila

. J. Neurosci. 

20

678 

5981-5988. 

679 

22. 

Göpfert, M.C., and Robert, D. (2001). Biomechanics. Turning the key on 

680 

Drosophila

 audition. Nature 

411

, 908. 10.1038/35082144. 

681 

23. 

Yorozu, S., Wong, A., Fischer, B.J., Dankert, H., Kernan, M.J., Kamikouchi, A., 

682 

Ito, K., and Anderson, D.J. (2009). Distinct sensory representations of wind and 

683 

near-field sound in the 

Drosophila

 brain. Nature 

458

, 201-205. 

684 

10.1038/nature07843. 

685 

24. 

Kamikouchi, A., Inagaki, H.K., Effertz, T., Hendrich, O., Fiala, A., Göpfert, M.C., 

686 

and Ito, K. (2009). The neural basis of 

Drosophila

 gravity-sensing and hearing. 

687 

Nature 

458

, 165-171. 10.1038/nature07810. 

688 

25. 

Zars, T. (2001). Two thermosensors in 

Drosophila

 have different behavioral 

689 

functions. J. Comp. Physiol. A 

187

, 235-242. 

690 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

31 

 

26. 

Martin, F., Riveron, J., and Alcorta, E. (2011). Environmental temperature 

691 

modulates olfactory reception in 

Drosophila melanogaster

. J. Insect Physiol. 

57

692 

1631-1642. 10.1016/j.jinsphys.2011.08.016. 

693 

27. 

Riveron, J., Boto, T., and Alcorta, E. (2009). The effect of environmental 

694 

temperature on olfactory perception in 

Drosophila melanogaster

. J. Insect 

695 

Physiol. 

55

, 943-951. 10.1016/j.jinsphys.2009.06.009. 

696 

28. 

Lou, L., Tu, Z.J., Lahondere, C., and Vinauger, C. (2024). Rhythms in insect 

697 

olfactory systems: underlying mechanisms and outstanding questions. J. Exp. 

698 

Biol. 

227

, jeb244182. 10.1242/jeb.244182. 

699 

29. 

Senthilan, P.R., Piepenbrock, D., Ovezmyradov, G., Nadrowski, B., Bechstedt, 

700 

S., Pauls, S., Winkler, M., Mobius, W., Howard, J., and Göpfert, M.C. (2012). 

701 

Drosophila

 auditory organ genes and genetic hearing defects. Cell 

150

, 1042-

702 

1054. 10.1016/j.cell.2012.06.043. 

703 

30. 

Krishnan, B., Levine, J.D., Lynch, M.K., Dowse, H.B., Funes, P., Hall, J.C., 

704 

Hardin, P.E., and Dryer, S.E. (2001). A new role for cryptochrome in a 

Drosophila

 

705 

circadian oscillator. Nature 

411

, 313-317. 10.1038/35077094. 

706 

31. 

Ikeda, K., Kataoka, M., and Tanaka, N.K. (2022). Nonsynaptic transmission 

707 

mediates light context-dependent odor responses in 

Drosophila melanogaster

. J. 

708 

Neurosci. 

42

, 8621-8628. 10.1523/JNEUROSCI.1106-22.2022. 

709 

32. 

Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K., Kay, S.A., 

710 

Rosbash, M., and Hall, J.C. (1998). The 

cry

b

 mutation identifies cryptochrome as 

711 

a circadian photoreceptor in 

Drosophila

. Cell 

95

, 681-692. 

712 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

32 

 

33. 

Emery, P., So, W.V., Kaneko, M., Hall, J.C., and Rosbash, M. (1998). CRY, a 

713 

Drosophila clock and light-regulated cryptochrome, is a major contributor to 

714 

circadian rhythm resetting and photosensitivity. Cell 

95

, 669-679. S0092-

715 

8674(00)81637-2 [pii]. 

716 

34. 

Emery, P., Stanewsky, R., Helfrich-Forster, C., Emery-Le, M., Hall, J.C., and 

717 

Rosbash, M. (2000). 

Drosophila

 CRY is a deep brain circadian photoreceptor. 

718 

Neuron 

26

, 493-504. 

719 

35. 

Ishikawa, T., Matsumoto, A., Kato, T., Jr., Togashi, S., Ryo, H., Ikenaga, M., 

720 

Todo, T., Ueda, R., and Tanimura, T. (1999). DCRY is a 

Drosophila

 

721 

photoreceptor protein implicated in light entrainment of circadian rhythm. Genes 

722 

Cells 

4

, 57-65. 10.1046/j.1365-2443.1999.00237.x. 

723 

36. 

Kwon, Y., Kim, S.H., Ronderos, D.S., Lee, Y., Akitake, B., Woodward, O.M., 

724 

Guggino, W.B., Smith, D.P., and Montell, C. (2010). 

Drosophila

 TRPA1 channel 

725 

is required to avoid the naturally occurring insect repellent citronellal. Curr. Biol. 

726 

20

, 1672-1678. S0960-9822(10)01006-7 [pii] 10.1016/j.cub.2010.08.016. 

727 

37. 

Helfand, S.L., and Carlson, J.R. (1989). Isolation and characterization of an 

728 

olfactory mutant in 

Drosophila

 with a chemically specific defect. Proc. Natl. Acad. 

729 

Sci. USA 

86

, 2908-2912. 10.1073/pnas.86.8.2908. 

730 

38. 

Keene, A.C., Stratmann, M., Keller, A., Perrat, P.N., Vosshall, L.B., and Waddell, 

731 

S. (2004). Diverse odor-conditioned memories require uniquely timed dorsal 

732 

paired medial neuron output. Neuron 

44

, 521-533. 

733 

10.1016/j.neuron.2004.10.006. 

734 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

33 

 

39. 

Ramdya, P., Lichocki, P., Cruchet, S., Frisch, L., Tse, W., Floreano, D., and 

735 

Benton, R. (2015). Mechanosensory interactions drive collective behaviour in 

736 

Drosophila

. Nature 

519

, 233-236. 10.1038/nature14024. 

737 

40. 

Kang, K., Pulver, S.R., Panzano, V.C., Chang, E.C., Griffith, L.C., Theobald, 

738 

D.L., and Garrity, P.A. (2010). Analysis of 

Drosophila

 TRPA1 reveals an ancient 

739 

origin for human chemical nociception. Nature 

464

, 597-600. nature08848 [pii] 

740 

10.1038/nature08848. 

741 

41. 

Oyedele, A.O., Gbolade, A.A., Sosan, M.B., Adewoyin, F.B., Soyelu, O.L., and 

742 

Orafidiya, O.O. (2002). Formulation of an effective mosquito-repellent topical 

743 

product from lemongrass oil. Phytomedicine 

9

, 259-262. 10.1078/0944-7113-

744 

00120. 

745 

42. 

Montell, C. (2012). 

Drosophila

 visual transduction. Trends Neurosci. 

35

, 356-363. 

746 

10.1016/j.tins.2012.03.004. 

747 

43. 

Ni, J.D., Baik, L.S., Holmes, T.C., and Montell, C. (2017). A rhodopsin in the 

748 

brain functions in circadian photoentrainment in 

Drosophila

. Nature 

545

, 340-

749 

344. 10.1038/nature22325. 

750 

44. 

Sakai, K., Tsutsui, K., Yamashita, T., Iwabe, N., Takahashi, K., Wada, A., and 

751 

Shichida, Y. (2017). 

Drosophila melanogaster 

rhodopsin Rh7 is a UV-to-visible 

752 

light sensor with an extraordinarily broad absorption spectrum. Sci. Rep. 

7

, 7349. 

753 

10.1038/s41598-017-07461-9. 

754 

45. 

Sharkey, C.R., Blanco, J., Leibowitz, M.M., Pinto-Benito, D., and Wardill, T.J. 

755 

(2020). The spectral sensitivity of 

Drosophila

 photoreceptors. Sci. Rep. 

10

756 

18242. 10.1038/s41598-020-74742-1. 

757 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

34 

 

46. 

Fogle, K.J., Parson, K.G., Dahm, N.A., and Holmes, T.C. (2011). 

758 

CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. 

759 

Science 

331

, 1409-1413. 10.1126/science.1199702. 

760 

47. 

Baik, L.S., Fogle, K.J., Roberts, L., Galschiodt, A.M., Chevez, J.A., Recinos, Y., 

761 

Nguy, V., and Holmes, T.C. (2017). CRYPTOCHROME mediates behavioral 

762 

executive choice in response to UV light. Proc. Natl. Acad. Sci. USA 

114

, 776-

763 

781. 10.1073/pnas.1607989114. 

764 

48. 

Vosshall, L.B., and Stocker, R.F. (2007). Molecular architecture of smell and 

765 

taste in 

Drosophila

. Annu. Rev. Neurosci. 

30

, 505-533. 

766 

49. 

Zhao, J., Kilman, V.L., Keegan, K.P., Peng, Y., Emery, P., Rosbash, M., and 

767 

Allada, R. (2003). 

Drosophila

 clock can generate ectopic circadian clocks. Cell 

768 

113

, 755-766. 10.1016/s0092-8674(03)00400-8. 

769 

50. 

Emery, P., Stanewsky, R., Hall, J.C., and Rosbash, M. (2000). A unique 

770 

circadian-rhythm photoreceptor. Nature 

404

, 456-457. 10.1038/35006558. 

771 

51. 

Kwon, J.Y., Dahanukar, A., Weiss, L.A., and Carlson, J.R. (2011). Molecular and 

772 

cellular organization of the taste system in the 

Drosophila

 larva. J. Neurosci. 

31

773 

15300-15309. 31/43/15300 [pii] 10.1523/JNEUROSCI.3363-11.2011. 

774 

52. 

Agrawal, P., Houl, J.H., Gunawardhana, K.L., Liu, T., Zhou, J., Zoran, M.J., and 

775 

Hardin, P.E. (2017). 

Drosophila

 CRY entrains clocks in body tissues to light and 

776 

maintains passive membrane properties in a non-clock body tissue independent 

777 

of light. Curr. Biol. 

27

, 2431-2441. 10.1016/j.cub.2017.06.064. 

778 

53. 

Arthaut, L.D., Jourdan, N., Mteyrek, A., Procopio, M., El-Esawi, M., d'Harlingue, 

779 

A., Bouchet, P.E., Witczak, J., Ritz, T., Klarsfeld, A., et al. (2017). Blue-light 

780 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

35 

 

induced accumulation of reactive oxygen species is a consequence of the 

781 

Drosophila

 cryptochrome photocycle. PLoS One 

12

, e0171836. 

782 

10.1371/journal.pone.0171836. 

783 

54. 

Fang, X., Ide, N., Higashi, S., Kamei, Y., Toyooka, T., Ibuki, Y., Kawai, K., Kasai, 

784 

H., Okamoto, K., Arimoto-Kobayashi, S., and Negishi, T. (2014). Somatic cell 

785 

mutations caused by 365 nm LED-UVA due to DNA double-strand breaks 

786 

through oxidative damage. Photochem. Photobiol. Sci. 

13

, 1338-1346. 

787 

10.1039/c4pp00148f. 

788 

55. 

Negishi, T., Xing, F., Koike, R., Iwasaki, M., Wakasugi, M., and Matsunaga, T. 

789 

(2023). UVA causes specific mutagenic DNA damage through ROS production, 

790 

rather than CPD formation, in 

Drosophila

 larvae. Mutat. Res. Genet. Toxicol. 

791 

Environ. Mutagen. 

887

, 503616. 10.1016/j.mrgentox.2023.503616. 

792 

56. 

Guntur, A.R., Gu, P., Takle, K., Chen, J., Xiang, Y., and Yang, C.H. (2015). 

793 

Drosophila

 TRPA1 isoforms detect UV light via photochemical production of 

794 

H

2

O

2

. Proc. Natl. Acad. Sci. USA 

112

, E5753-5761. 10.1073/pnas.1514862112. 

795 

57. 

Du, E.J., Ahn, T.J., Wen, X., Seo, D.W., Na, D.L., Kwon, J.Y., Choi, M., Kim, 

796 

H.W., Cho, H., and Kang, K. (2016). Nucleophile sensitivity of 

Drosophila

 TRPA1 

797 

underlies light-induced feeding deterrence. eLife 

5

, e18425. 

798 

10.7554/eLife.18425. 

799 

58. 

Zhong, L., Bellemer, A., Yan, H., Honjo, K., Robertson, J., Hwang, R.Y., Pitt, 

800 

G.S., and Tracey, W.D. (2012). Thermosensory and non-thermosensory isoforms 

801 

of 

Drosophila melanogaster

 TRPA1 reveal heat sensor domains of a thermoTRP 

802 

channel. Cell Rep. 

1

, 43-55. 10.1016/j.celrep.2011.11.002. 

803 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

36 

 

59. 

Kang, K., Panzano, V.C., Chang, E.C., Ni, L., Dainis, A.M., Jenkins, A.M., 

804 

Regna, K., Muskavitch, M.A., and Garrity, P.A. (2012). Modulation of TRPA1 

805 

thermal sensitivity enables sensory discrimination in 

Drosophila

. Nature 

481

, 76-

806 

80. 10.1038/nature10715. 

807 

60. 

Gu, P., Gong, J., Shang, Y., Wang, F., Ruppell, K.T., Ma, Z., Sheehan, A.E., 

808 

Freeman, M.R., and Xiang, Y. (2019). Polymodal nociception in 

Drosophila

 

809 

requires alternative splicing of 

TrpA1

. Curr. Biol. 

29

, 3961-3973. 

810 

10.1016/j.cub.2019.09.070. 

811 

61. 

Luo, J., Shen, W.L., and Montell, C. (2017). TRPA1 mediates sensation of the 

812 

rate of temperature change in 

Drosophila

 larvae. Nat. Neurosci. 

20

, 34-41. 

813 

10.1038/nn.4416. 

814 

62. 

Gao, Q., Yuan, B., and Chess, A. (2000). Convergent projections of 

Drosophila

 

815 

olfactory neurons to specific glomeruli in the antennal lobe. Nat. Neurosci. 

3

816 

780-785. 10.1038/77680. 

817 

63. 

Grabe, V., Strutz, A., Baschwitz, A., Hansson, B.S., and Sachse, S. (2015). 

818 

Digital 

in vivo

 3D atlas of the antennal lobe of 

Drosophila melanogaster

. J. Comp. 

819 

Neurol. 

523

, 530-544. 10.1002/cne.23697. 

820 

64. 

Laissue, P.P., Reiter, C., Hiesinger, P.R., Halter, S., Fischbach, K.F., and 

821 

Stocker, R.F. (1999). Three-dimensional reconstruction of the antennal lobe in 

822 

Drosophila melanogaster

. J. Comp. Neurol. 

405

, 543-552. 

823 

65. 

Bates, A.S., Schlegel, P., Roberts, R.J.V., Drummond, N., Tamimi, I.F.M., 

824 

Turnbull, R., Zhao, X., Marin, E.C., Popovici, P.D., Dhawan, S., et al. (2020). 

825 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

37 

 

Complete connectomic reconstruction of olfactory projection neurons in the fly 

826 

brain. Curr. Biol. 

30

, 3183-3199. 10.1016/j.cub.2020.06.042. 

827 

66. 

Story, G.M., Peier, A.M., Reeve, A.J., Eid, S.R., Mosbacher, J., Hricik, T.R., 

828 

Earley, T.J., Hergarden, A.C., Andersson, D.A., Hwang, S.W., et al. (2003). 

829 

ANKTM1, a TRP-like channel expressed in nociceptive neurons, Is activated by 

830 

cold temperatures. Cell 

112

, 819-829. 

831 

67. 

Bandell, M., Story, G.M., Hwang, S.W., Viswanath, V., Eid, S.R., Petrus, M.J., 

832 

Earley, T.J., and Patapoutian, A. (2004). Noxious cold ion channel TRPA1 is 

833 

activated by pungent compounds and bradykinin. Neuron 

41

, 849-857. 

834 

68. 

Jordt, S.E., Bautista, D.M., Chuang, H.H., McKemy, D.D., Zygmunt, P.M., 

835 

Högestätt, E.D., Meng, I.D., and Julius, D. (2004). Mustard oils and cannabinoids 

836 

excite sensory nerve fibres through the TRP channel ANKTM1. Nature 

427

, 260-

837 

265. 

838 

69. 

Hall, J.C. (2003). Genetics and molecular biology of rhythms in Drosophila and 

839 

other insects. Adv. Genet. 

48

, 1-280. 10.1016/s0065-2660(03)48000-0. 

840 

70. 

Konopka, R.J., and Benzer, S. (1971). Clock mutants of 

Drosophila 

841 

melanogaster

. Proc. Natl. Acad. Sci. USA. 

68

, 2112-2116. 

842 

71. 

Rosbash, M. (2021). Circadian rhythms and the transcriptional feedback loop 

843 

(Nobel Lecture). Angew. Chem. Int. Ed. Engl. 

60

, 8650-8666. 

844 

10.1002/anie.202015199. 

845 

72. 

Young, M.W. (2018). Time travels: a 40-year journey from Drosophila's clock 

846 

mutants to human circadian disorders (Nobel Lecture). Angew. Chem. Int. Ed. 

847 

Engl. 

57

, 11532-11539. 10.1002/anie.201803337. 

848 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

38 

 

73. 

Grebler, R., Kistenpfennig, C., Rieger, D., Bentrop, J., Schneuwly, S., Senthilan, 

849 

P.R., and Helfrich-Forster, C. (2017). Drosophila Rhodopsin 7 can partially 

850 

replace the structural role of Rhodopsin 1, but not its physiological function. J. 

851 

Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 10.1007/s00359-

852 

017-1182-8. 

853 

74. 

Kistenpfennig, C., Grebler, R., Ogueta, M., Hermann-Luibl, C., Schlichting, M., 

854 

Stanewsky, R., Senthilan, P.R., and Helfrich-Forster, C. (2017). A new rhodopsin 

855 

influences light-dependent daily activity patterns of fruit flies. J. Biol. Rhythms, 

856 

748730417721826. 10.1177/0748730417721826. 

857 

75. 

Meyerhof, G.T., Easwaran, S., Morales, A.E., Montell, C., and Montell, D.J. 

858 

(2024). Altered circadian rhythm, sleep, and rhodopsin 7-dependent shade 

859 

preference during diapause in 

Drosophila melanogaster

. Proc. Natl. Acad. Sci. 

860 

U.S.A. 

121

, e2400964121. 10.1073/pnas.2400964121. 

861 

76. 

Matsunaga, T., Reisenman, C.E., Goldman-Huertas, B., Rajshekar, S., Suzuki, 

862 

H.C., Tadres, D., Wong, J., Louis, M., Ramirez, S.R., and Whiteman, N.K. 

863 

(2024). Odorant receptors tuned to isothiocyanates in 

Drosophila melanogaster

 

864 

and their evolutionary expansion in herbivorous relatives. bioRxiv. 

865 

10.1101/2024.10.08.617316. 

866 

77. 

Hallem, E.A., Ho, M.G., and Carlson, J.R. (2004). The molecular basis of odor 

867 

coding in the 

Drosophila

 antenna. Cell 

117

, 965-979. 10.1016/j.cell.2004.05.012 

868 

S0092867404004982 [pii]. 

869 

78. 

Vasiliauskas, D., Mazzoni, E.O., Sprecher, S.G., Brodetskiy, K., Johnston Jr, 

870 

R.J., Lidder, P., Vogt, N., Celik, A., and Desplan, C. (2011). Feedback from 

871 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

39 

 

rhodopsin controls rhodopsin exclusion in 

Drosophila

 photoreceptors. Nature 

872 

479

, 108-112. nature10451 [pii] 10.1038/nature10451. 

873 

79. 

Dolezelova, E., Dolezel, D., and Hall, J.C. (2007). Rhythm defects caused by 

874 

newly engineered null mutations in Drosophila's 

cryptochrome

 gene. Genetics 

875 

177

, 329-345. 10.1534/genetics.107.076513. 

876 

80. 

Ye, B., Zhang, Y., Song, W., Younger, S.H., Jan, L.Y., and Jan, Y.N. (2007). 

877 

Growing dendrites and axons differ in their reliance on the secretory pathway. 

878 

Cell 

130

, 717-729. 10.1016/j.cell.2007.06.032. 

879 

81. 

Ha, T.S., Sengupta, S., Powell, J., and Smith, D.P. (2023). An angiotensin 

880 

converting enzyme homolog is required for volatile pheromone detection, odorant 

881 

binding protein secretion and normal courtship behavior in 

Drosophila 

882 

melanogaster

. Genetics 

224

, iyad109. 10.1093/genetics/iyad109. 

883 

82. 

Lin, C.C., Prokop-Prigge, K.A., Preti, G., and Potter, C.J. (2015). Food odors 

884 

trigger 

Drosophila

 males to deposit a pheromone that guides aggregation and 

885 

female oviposition decisions. eLife 

4

, e08688. 10.7554/eLife.08688. 

886 

83. 

Hamada, F.N., Rosenzweig, M., Kang, K., Pulver, S.R., Ghezzi, A., Jegla, T.J., 

887 

and Garrity, P.A. (2008). An internal thermal sensor controlling temperature 

888 

preference in 

Drosophila

. Nature 

454

, 217-220. 

889 

 

890 

Figure legends 

891 

Figure 1. DART2 assay for assaying olfactory behavior 

892 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

40 

 

(A) A two-way choice DART2 assay set up using glass tubes with meshed chambers 

893 

carrying odorants or solvents. Flies were imaged using reflected near-infrared (N-IR) 

894 

light. 

895 

(B) Calibration of the number of flies used per tube. Summary of variance and effect 

896 

size plotted against number of flies per tube, which were exposed to 1% BA. Each 

897 

population test was repeated 5 

– 6 times.

  

898 

(C-I) Testing the impact of using different numbers of flies in the DART2 assay on the 

899 

variability of the CoM. (C) 1 fly per tube. (D) 2 flies per tube. (E) 4 flies per tube. (F) 8 

900 

flies per tube. (G) 16 flies per tube. (H) 32 flies per tube. (I) 64 flies per tube. 

 

901 

See also Figure S1. 

902 

 

903 

Figure 2. Impact of light on olfactory aversion.  

904 

(A) Average CoM of control flies in response to 1% BA under dark conditions (0

–0.01 

905 

μW/cm

2

) or under ‘white light,’ which was supplied by simultaneously applying red, 

906 

green, blue and UV LEDs (with light intensity at ~100 μW/cm

 for each wavelength). n = 

907 

14. Mann-Whitney U test.  

908 

(B) Average CoM of control flies in response to 1% BA with red, green, blue or UV 

909 

illumination, with the light intensity at ~100 μW/cm

 for each wavelength. n = 12. 

910 

ANOVA followed by Dunn’s multiple comparisons test. 

911 

(C)

 

Average CoM of control flies in response to 1% BA as a function of UV intensity. n = 

912 

13. ANOVA followed by Dunn’s multiple comparisons test.

 

913 

(D) Average CoM of control flies in response to 1% BA as a function of intensity of blue 

914 

ligh

t (450 nm). n = 12. ANOVA followed by Dunn’s multiple comparisons test.

 

 

915 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

41 

 

(E)

 

Average CoM of control flies in response to varying concentrations of BA under UV 

916 

illumination at 100 μW/cm

2

. n = 12.

 

Mann-Whitney U test.  

917 

(F)

 

Average CoM of control flies in response to 1% propionic acid (PA), 1% R-limonene 

918 

(R-lim), 0.1% allyl isothiocyanate (AITC), 3% citronellal (Citr), 0.01% isovaleric acid 

919 

(IVA) and 3% lemongrass (LG) under UV illumination at 100 μW/cm

2

. n = 12. Mann-

920 

Whitney U test.  

921 

Error bars indicate means ± SEMs. ** p < 0.01, *** p < 0.001. 

922 

 

923 

Figure 3. Direct effect of light on antennal odor responses. 

924 

(A)

 

EAG responses in control flies exposed to 1% BA in the dark (left) or under blue 

925 

light (450 nm) for 5 min (right).  

926 

(B) Peak EAG responses. n= 8. Paired Wilcoxon test.  

927 

(C)

 

Average position of CoM of control, 

norpA

P24

, rh1 

(

ninaE

)

, rh3, rh4 

and

 rh7 

null 

928 

mutants from 20 - 

60 min during the assay under UV illumination at 100 μW/cm

2

. n = 11 

929 

– 13. Mann-Whitney U test.  

930 

(D) Average CoM of control, 

cry

01

 and 

cry

01

/Df in response to 1% BA from 20 - 60 min 

931 

during the assay under UV illumination (365 nm, 100 μW/cm

2

) or blue illumination (450 

932 

nm, 250 μW/cm

2

). n = 8 

– 13. ANOVA followed by Dunn’s multiple comparisons test.

   

933 

(E)

 

EAG responses in control and 

cry

01

 flies exposed to 1% BA in the dark (left) or 

934 

under blue light (450 nm) for 5 min (right).  

935 

(F)

 

Summary of peak EAG responses. n= 8. Paired Wilcoxon test. ns = not significant.  

936 

Error bars indicate means ± SEMs. ** p < 0.01. *** p < 0.001.

  

937 

See also Figure S2.  

938 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

42 

 

 

939 

Figure 4. Testing for co-localization of the cry reporter in antenna with ORN and 

940 

support cell markers.

  

941 

(A) Antennal cross-section showing 

UAS-mCD8::GFP

 expression driven by 

cry-GAL4

 

942 

and stained with an anti-GFP antibody.  

943 

(B) Same sample as (A)

 

showing expression of 

RFP

 driven directly by the 

orco

 

944 

promoter (

orco-RFP

) and stained with anti-RFP.

  

945 

(C) Merge of (A) and (B). In (A), (B), and (C) the length of each scale bar is 20 µm. 

946 

(D) Magnified section, marked in (C) indicated by white dotted rectangle. The length of 

947 

the scale bar is 10 µm. 

948 

(E) Antennal cross-section showing expression of GFP-tagged Cry (GFP::Cry) stained 

949 

with anti-GFP.  

950 

(F) Same sample as (E) showing expression of 

UAS-DsRed

 driven by

 

the

 lush-GAL4

 

951 

and stained with anti-DsRed.  

952 

(G) Overlay of (E) and (F). In (E), (F), and (G)

 the length of each scale bar is 20 µm. 

953 

See also Figures S3, S4 and S5.  

954 

 

955 

Figure 5. Characterizing the role of cry in the antenna

  

956 

(A) Rescue of 

cry

 expression (

UAS-cry

) in 

lush

 expressing cells (

lush-GAL4

) in the 

cry

01

 

957 

mutant shows similar reduction as control flies in aversion to BA under UV illumination. 

958 

The control flies carried 

w

+

 and the 2

nd

 and 3

rd

 chromosomes were from 

w

1118

 (BDSC 

959 

#5905). n = 8-

10. ANOVA followed by Dunn’s multiple comparisons test.  

960 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

43 

 

(B) Levels of ROS generation in isolated antennae under UV stimulation, shown in 

961 

terms of change in fluorescence intensity (ΔF/F) using DCFDA. n = 10 – 11. Mann-

962 

Whitney U test.  

963 

(C) Induction of oxidative stress in support cells is sufficient to reduce aversion to BA. 

H. 

964 

sapiens

 

UAS-duOx

 was expressed using the 

lush-GAL4

. n = 4-5. ANOVA followed by 

965 

Dunn’s multiple comparisons test.  

966 

Error bars indicate means ± SEMs. * p < 0.05. ** p < 0.01. ns = not significant.  

967 

 

968 

Figure 6. Examining staining in the antennal lobes using reporters for different 

969 

trpA1 isoforms. 

970 

(A) Antennal lobe expressing 

UAS-GFP

 under the control of the 

trpA1-AB-GAL4

, and 

971 

stained with anti-GFP and anti-nc82.  The white arrowhead indicates an anterior cell 

972 

(AC) neuron.

83

  

973 

(B)

 

Antennal lobe expressing 

UAS-GFP

 under the control of the 

trpA1-CD-GAL4

, and 

974 

stained with anti-GFP and anti-nc82.  

975 

(C) Antennal lobe expressing 

UAS-GFP

 under the control of the 

trpA1-C-T2A-GAL4

976 

and stained with anti-GFP and anti-nc82.  

977 

(D) Antennal lobe expressing 

UAS-GFP

 under the control of the 

trpA1-D-T2A-GAL4

978 

and stained with anti-GFP and anti-nc82.   

979 

The length of each scale bar is 20 µm. 

980 

See also Figure S6. 

981 

 

982 

Figure 7.

 

TRPA1 activity in response to benzaldehyde and ROS   

983 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

44 

 

(A) Average CoM of control, 

trpA1

1

, trpA-KO

 and 

trpA1-C-KI 

flies in response to 1% BA 

984 

from 20 - 60 min during the assay. n = 11. ANOVA followed by 

Dunn’s multiple 

985 

comparisons test.  

986 

(B) Average CoM of 

trpA1

1

 flies expressing 

UAS-TRPA1-C

 or 

UAS-TRPA1-D

 driven by 

987 

the 

trpA1-CD-GAL4 

in response to 1% BA from 20 - 60 min during the assay. ANOVA 

988 

followed by 

Dunn’s multiple comparisons test. 

989 

(C) Average CoM of flies expressing 

UAS-Kir2.1

 driven by 

trpA1-C-T2A-GAL4 

or the 

990 

orco-GAL4

 in response to 1% BA from 20 - 60 min during the assay. n = 5 

– 11. ANOVA 

991 

followed by 

Dunn’s multiple comparisons test. 

992 

(D) Representative whole-cell currents from S2 cells expressing TRPA1-C in response 

993 

to 0.1% BA and 0.1% AITC. 

994 

(E) Representative whole-cell currents from S2 cells expressing TRPA1-D in response 

995 

to 0.1% BA and 0.1% AITC. Low concentrations of BA and AITC were sufficient to 

996 

activate large whole cell currents because TRPA1-C was overexpressed.  

997 

(F) Summary of peak current responses to 0.1% BA from cells expressing only GFP 

998 

(control), TRPA1C or TRPA1D. n = 3 

– 7. ANOVA followed by Dunn’s multiple 

999 

comparisons test.  

1000 

(G) Whole-cell representative currents from S2 cells expressing only GFP (control) in 

1001 

response to 100 µM H

2

O

2

.  

1002 

(H) Whole-cell representative currents from S2 cells expressing TRPA1-C in response 

1003 

to 100 µM H

2

O

and 0.1% BA. 

1004 

(I) Summary of peak current responses to 0.1% BA from cells expressing either GFP 

1005 

only (control) or TRPA1-C. n = 4 

– 6. Mann-Whitney U test. 

1006 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

45 

 

Error bars indicate means ± SEMs. * p < 0.05. ** p < 0.01. *** p < 0.001. ns = not 

1007 

significant. 

1008 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

solvent

N-IR camera

odorant

A

C

0.5

0.6

0.7

0.8

0.9 eff

e

ct 
siz
e

 (av

g

Co
M)

0.00

0.01

0.02

0.03

flies per tube

v

a

ri

a

n

ce

B

D

min

act

iv

ity

 (

C

oM)

1 fly/assay

benzaldehyde

0

20

40

60

0.0

0.5

1.0

solvent only

E

min

0

20

40

60

0.0

0.5

1.0

2 flies/assay

F

min

0

20

40

60

0.0

0.5

1.0

4 flies/assay

H

0

20

40

60

0.0

0.5

1.0

min

16 flies/assay

G

0

20

40

60

0.0

1.0

min

8 flies/assay

0.5

I

0

20

40

60

0.0

0.5

1.0

min

32 flies/assay

act

iv

ity

 (

C

oM)

0

20

40

60

0.0

0.5

1.0

min

64 flies/tube

a

ctiv

ity

 (C

o

M

)

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

A

dark

white

0.0

0.2

0.4

0.6

0.8

1.0

***

a

v

g

CoM

benzaldehyde

solvent only

C

UV intensity 

μW/cm

2

benzaldehyde

***

***

***

0

1

20

100

200

0.0

0.2

0.4

0.6

0.8

1.0

dark
UV

a

v

g

CoM

solvent only

E

% benzaldehyde

0.1

1.0

10.0

0.0

0.2

0.4

0.6

0.8

1.0

0.5

***

dark

UV

a

v

g

CoM

solvent only

B

F

a

v

g

CoM

0.0

0.2

0.4

0.6

0.8

1.0

***

***

dark

UV

solvent only

D

blue intensity 

μW/cm

2

dark 5.5

18

65

250

0.0

0.2

0.4

0.6

0.8

1.0

benzaldehyde

***

**

**

av

g

C

oM

dark
blue

solvent only

solvent only

***

***

benzaldehyde

0.0

0.2

0.4

0.6

0.8

1.0

dark

R

G

B

UV

a

v

g

CoM

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

0

.3

 m

V

3 s

450 nm

cry

01

benzaldehyde

E

A

450 nm

control

benzaldehyde

0

.3

 m

V

3 s

B

dark

450 nm

0.0

0.5

1.0

1.5

**

pe

ak 

resp

on

se

 (

m

V)

F

p

e

a

res

p

o

n

se 

(m

V

)

dark

450 nm

0.0

0.5

1.0

1.5

ns

C

benzaldehyde

dark

UV

a

v

g

CoM

**

***

0.0

0.2

0.4

0.6

0.8

1.0

**

***

***

ns

ns

solvent only

D

control

cry

01

cry

01

/Df

***

ns

***

dark

UV

blue

a

v

g

CoM

0.0

0.2

0.4

0.6

0.8

1.0

benzaldehyde

ns

ns

ns

solvent only

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

A

B

C

antenna

orco

D

cry

orco

cry

orco

cry

E

F

G

lush

lush

GFP::Cry

GFP::Cry

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

B

C

benzaldehyde

UAS-duox

lush-GAL4

+

+

+

+

0.4

0.6

0.8

1.0

*

ns

*

a

v

g

CoM

A

UAS-cry

lush-GAL4

365 nm

+

+

+

+

benzaldehyde

0.4

0.6

0.8

1.0

**

**

**

**

av

g

C

oM

cry

01

control

0

2

4

6

8

10

365 nm

**

control

cry

01

DC

FD

A

 -

 Δ

F/F 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

D

A

B

nc82

trpA1-CD

trpA1-AB

nc82

C

trpA1-C

nc82

trpA1-D

nc82

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

F

pe

ak

 curr

en

(|

nA

|)

0.0

0.2

0.4

0.6

0.8

1.0

**

ns

D

TRPA1-C

BA

AITC

0.2 

nA

20 s

BA

AITC

TRPA1-D

E

0.2 

nA

20 s

0.

nA

20 s

G

H

0.2 

nA

20 s

BA

H

2

O

2

H

2

O

2

TRPA1-C

control

I

0.0

0.5

1.0

1.5

pe

ak

 curr

en

(|

nA

|)

control TRPA1-C

**

H

2

O

2

H

2

O

2

BA-H

2

O

2

B

0.0

0.2

0.4

0.6

0.8

1.0

UAS-trpA1-C

UAS-trpA1-D
trpA1-CD-GAL4

benzaldehyde

trpA1

1

**

+

+

+

+

+

+

av

g.

 C

oM

solvent only

A

benzaldehyde

0.0

0.2

0.4

0.6

1.0

**

***

**

*

av

g.

 C

oM

0.8

solvent only

C

UAS-Kir

orco-GAL4

benzaldehyde

+

+

+

+

+

trpA1-C-T2A-GAL4

av

g.

 C

oM

0.0

0.2

0.4

0.6

0.8

1.0

**

*

***

**

+

+

solvent only

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

Highlights 

 

UV or blue light reduces responses to some repulsive odors (e.g. benzaldehyde; 
BA) 

 

Light is sensed by cryptochrome in support cells in olfactory sensilla, creating 
ROS 

 

ROS is transferred to olfactory receptor neurons causing persistent TRPA1 
activation 

 

ROS activation of TRPA1 reduces activation of TRPA1 by BA, diminishing BA 
repulsion 

 

 

 

 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

 

KEY RESOURCES TABLE 

REAGENT or RESOURCE 

SOURCE 

IDENTIFIER 

Antibodies 

anti-GFP (chicken)

 

Invitrogen

 

Cat # A-11122; 
RRID: AB_221569

 

anti-dsRed (rabbit)

 

Clontech

 

Cat # 632496; 
RRID: 
AB_10013483

 

anti-nc82 (mouse)

 

Developmental 
Study Hybridoma 
Bank

 

Cat # nc82; RRID: 
AB_2314866

 

Goat anti-chicken, Alexa Fluor 488

 

Thermo Fisher 
Scientific

 

Cat # A-11039; 
RRID: 
AB_2534096

 

Goat anti-mouse, Alexa Fluor 568

 

Thermo Fisher 
Scientific

 

Cat # A-11004; 
RRID: 
AB_2534072

 

 

Goat anti-rabbit, Alexa Fluor 568

 

Thermo Fisher 
Scientific

 

Catalog # A-
11011; RRID: 
AB_3095432

 

Bacterial and virus strains  

N/A 

N/A 

N/A 

Biological samples 

Drosophila melanogaster strains 

Details in 
Experimental 
Models section 
below 

N/A 

S2R+ Drosophila cells 

Details in 
Experimental 
Models section 
below 

N/A 

Chemicals, peptides, and recombinant proteins 

Benzaldehyde

 

Sigma-Aldrich

 

Cat # B1334

 

Propionic acid

 

Sigma-Aldrich

 

Cat # 81910

 

Isovaleric acid

 

Sigma-Aldrich

 

Cat # 129542

 

Citronellal

 

Sigma-Aldrich

 

Cat # 27470

 

AITC

 

Sigma-Aldrich

 

Cat # W203408

 

Poly-L-ornithine

 

Sigma-Aldrich

 

Cat # P4957

 

Lemongrass oil

 

Nature’s Alchemy 
Pure Essential Oils

 

N/A

 

R-limonene

 

Fluka

 

Cat # 62122

 

Hydrogen peroxide

 

Thermo Fisher 
Scientific

 

Cat # H325

 

DMSO

 

J.T Baker

 

Cat # 67-68-5

 

H2-DCFDA

 

Thermo Fisher 
Scientific

 

Cat # D399

 

PBS

 

Thermo Fisher 
Scientific

 

Cat # AAJ62036K2

 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

 

Paraformaldehyde 16% solution

 

Electron Microscopy 
Sciences

 

Cat # 15710

 

Goat serum

 

Thermo Fisher 
Scientific

 

Cat # 
ICN19135680

 

Schneider's Drosophila Medium

 

Gibco

 

Cat # 21720

 

Fetal bovine serum

 

GenClone

 

Cat # 25-514H

 

HEPES

 

Gibco

 

Cat # 11344-041

 

Penicillin-Streptomycin

 

Gibco

 

Cat # 15140122

 

Triton X-100

 

Sigma-Aldrich

 

Cat # X100

 

Glucose

 

Sigma-Aldrich

 

Cat # G8270

 

Sucrose

 

Sigma-Aldrich

 

Cat # S0389

 

Trehalose

 

Sigma-Aldrich

 

Cat # T0167

 

Mannitol

 

Sigma-Aldrich

 

Cat # M4125

 

Magnesium chloride

 

Sigma-Aldrich

 

Cat # M8266

 

Calcium Chloride

 

Sigma-Aldrich

 

Cat # C3881

 

Potassium Chloride

 

Sigma-Aldrich

 

Cat # P9541

 

Sodium Chloride

 

Thermo Fisher 
Scientific

 

Cat # S271-3

 

Sodium bicarbonate

 

JT Baker

 

Cat # 3506-01

 

Sodium phosphate

 

Sigma-Aldrich

 

Cat # S0751

 

Black resin

 

Formlabs

 

Cat # FLGPBK01

 

Clear resin

 

Formlabs

 

Cat # FLGPCL04

 

Detergent

 

Alconox

 

Cat # 1104-1

 

Lipofectamine 2000

 

Invitrogen

 

Cat # 11668027

 

X-

tremeGENE™ HP DNA Transfection Reagent

 

 

Roche

 

Cat # 6366244001

 

Vectashield

 

Vectorlabs

 

Cat # H1000

 

Rapiclear 1.47

 

Sunjin lab

 

N/A

 

Signacreme electrode cream

 

Parker Labs

 

Cat # 17-05

 

Critical commercial assays 

N/A 

N/A 

N/A 

Deposited data 

Raw data  

This paper 

Dryad 
10.5061/dryad.ffbg
79d5n 

FlyCellAtlas 

https://flycellatlas.or
g/ 

N/A 

Experimental models: Cell lines 

S2R+ Drosophila cells

 

Drosophila 
Genomics Resource 
Center

 

Cat #

 150

 

Experimental models: Organisms/strains 

Drosophila

w

1118

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 5905

 

Drosophila

trpA1

1

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 26504

 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

 

Drosophila

norpA

P24

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 9048

 

Drosophila

ninaE

I17

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 5701

 

Drosophila

rh3

2

 

10

 

N/A

 

Drosophila

rh4

1

 

78

 

N/A

 

Drosophila

rh7

1

 

43

 

N/A

 

Drosophila

rh7

L

(rh7-LexA)

 

75

 

N/A

 

Drosophila

:

 cry

01

 

79

 

 N/A

 

Drosophila

:

 cry

Df

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 27922

 

Drosophila

:  

trpA1-AB-GAL4

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 67131

 

Drosophila

trpA1-CD-GAL4

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 67133

 

Drosophila

cry-GAL4

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 24514

 

Drosophila

ase5-GAL4

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 93029

 

Drosophila

nompA-GAL4

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 605353

 

Drosophila

repo-GAL4

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 7415

 

Drosophila

UAS-hDuOx

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 78412

 

Drosophila

UAS-Cry

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 86263

 

Drosophila

UAS-mCD8::GFP

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 5137

 

Drosophila

10xUAS-IVS-mCD8::RFP

,

 

13xLexAop2-mCD8::GFP

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 32229

 

Drosophila

orco-GAL4

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 23292

 

Drosophila

UAS-dsRed

 

80

 

 

 

Drosophila

trpA1-KO

 

Y. Xiang

60

 

 

 

Drosophila

trpA1-C-KI

 

Y. Xiang

60

 

 

 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

 

Drosophila

trpA1-C-T2A-GAL4

 

Y. Xiang

60

 

 

 

Drosophila

trpA1-D-T2A-GAL4

 

Y. Xiang

60

 

 

 

Drosophila

UAS-trpA1-C

 

W.D. Tracey

58

 

 

 

Drosophila

UAS-trpA1-D

 

W.D. Tracey

58

 

 

 

Drosophila

lush-GAL4

 

D. Smith

81

 

 

 

Drosophila

orco-RFP

 

Bloomington 
Drosophila Stock 
Center

 

Cat # 63045

 

Oligonucleotides 

N/A 

N/A 

N/A 

Recombinant DNA 

pAc5.1B-EGFP 

Addgene

 

21181

 

pAc5.1B-

trpA1-C

 

In this paper

 

N/A

 

pAc5.1B-

trpA1-D

 

In this paper

 

N/A

 

Software and algorithms 

Prism8

 

Graphpad

 

N/A

 

Fiji

 

NIH

 

N/A

 

Zen2

 

Zeiss

 

N/A

 

Pycharm

 

Jetbrains

 

N/A

 

CoM_tracker

 

In this paper

 

Dryad DOI: 
10.5061/dryad.ffbg
79d5n

 

PI_tracker

 

In this paper

 

Dryad 
DOI:10.5061/dryad
.ffbg79d5n

 

EAGPro

 

Ockenfels GmbH

 

N/A

 

Clampex 10.6 

Molecular Devices 

N/A 

Clampfit 

Molecular Devices 

N/A 

Other 

Glass capillaries for whole-cell electrophysiology

 

Warner Instruments

 

Cat # 1B150F-3

 

Glass capillaries for electroantennography

 

World Precision 
Instruments

 

Cat # 1B150F-3

 

Red LEDs; 630 nm

 

Waveform lighting

 

Cat # 7041.630

 

Green LEDs; 525 nm

 

Waveform lighting

 

Cat # 7041.525

 

Blue LEDs; 450 nm

 

Samsung 

 

Cat # LM561C

 

UV LEDs; 365 nm

 

Waveform lighting

 

Cat # 7021.365

 

Whatman qualitative filter paper, Grade 1, circles, 
diam. 10 mm

 

Sigma

 

Cat # 
WHA10016508

 

6" Long 10 Piece Pyrex Glass Tubes 10 mm OD 
8mm ID Blowing Tubing 1mm Wall

 

eBay

 

N/A

 

Odor cap

 

In this paper

 

Dryad DOI: 
10.5061/dryad.ffbg
79d5n

 

Fly loading funnel

 

In this paper

 

Dryad DOI: 
10.5061/dryad.ffbg
79d5n

 

Imaging chamber

 

In this paper

 

Dryad 
DOI:10.5061/dryad
.ffbg79d5n

 

Journal Pre-proof

1-s2.0-S2589004225007047-main-html.html
background image

 

 

Axon 200B

 

Molecular Devices

 

N/A

 

Digidata 1440A

 

Molecular Devices

 

N/A

 

IDAC-4

 

Ockenfels GmbH

 

N/A

 

Modified four-field arena

 

82

 

N/A

 

LSM700

 

 Zeiss

 

N/A

 

LSM900

 

 Zeiss

 

N/A

 

 

 

Journal Pre-proof