background image

 

 

TITLE 

Design and Mathematical Analysis of Synthetic Inhibitory Circuits that Program Self-Organizing 

Multicellular Structures  

 

AUTHOR 

Calvin Lam

1,2

 

 

ORCID 

0000-0003-2768-4230 

 

10 

CORRESPONDENCE 

11 

calvin.lam.k@gmail.com

 

12 

 

13 

AFFILIATIONS 

14 

1

Independent Investigator 

15 

 

16 

2

Present Address: Department of Biochemistry and Molecular Biology,

 

University of Nebraska Medical 

17 

Center, Omaha, NE, 68198, USA 

18 

 

19 

ABSTRACT 

20 

Bottom-up approaches are becoming increasingly popular for studying multicellular self-

21 

organization and development. In contrast to the classic top-down approach, where parts of the 

22 

organization/developmental process are broken to understand the process, the goal is to build the process 

23 

to understand it. For example, synthetic circuits have been built to understand how cell-cell 

24 

communication and differential adhesion can drive multicellular development. The majority of current 

25 

bottom-up efforts focus on using activatory circuits to engineer and understand development, but efforts 

26 

with inhibitory circuits have been minimal. Yet, inhibitory circuits are ubiquitous and vital to native 

27 

developmental processes. Thus, inhibitory circuits are a crucial yet poorly studied facet of bottom-up 

28 

multicellular development. To demonstrate the potential of inhibitory circuits for building and developing 

29 

multicellular structures, I designed several synthetic inhibitory circuits that combine engineered cell-cell 

30 

communication and differential adhesion. Using a previously validated in silico framework, I examine the 

31 

capability of these circuits for synthetic development. I show that the designed inhibitory circuits can 

32 

build a variety of patterned, self-organized structures and even morphological oscillations. These results 

33 

support that inhibitory circuits can be powerful tools for building, studying, and understanding  

34 

developmental processes. 

35 

 

36 

KEYWORDS 

37 

Synthetic biology, computational biology, synthetic development, synthetic receptors, amplifiers, tissue 

38 

engineering, self-organization, morphogenesis 

39 

 

40 

INTRODUCTION 

41 

The development of multicellular organisms is an intricate, highly coordinated dance that has 

42 

fascinated scientists for centuries 

1–9

. With minimal external control, individual units communicate with 

43 

one another, alter their behavior accordingly, and self-organize into ornately patterned, functional 

44 

structures 

10–17

. Understanding these developmental processes is a longstanding goal of biology; it not 

45 

only provides insight into multicellular life, but also insight for clinical applications such as tissue 

46 

engineering and regenerative medicine 

10,11,13–28

47 

However, understanding these multicellular developmental processes is notoriously difficult. The 

48 

classic top-down “break-it-to-understand-it” approach focuses on breaking a part of the process to 

49 

understand the process, but breaking a part can affect the subsequent and parallel parts 

15,16,29

. This 

50 

approach informs of the necessity of the part, but not necessarily the function(s) of the part 

16

51 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

 

 

In recent years, a complementary strategy has emerged through the field of synthetic biology. The 

52 

field’s modular tools allow programming and controlling cells, enabling a bottom-up “build-it-to-

53 

understand-it” approach. In contrast to the top-down approach, the bottom-up approach seeks to join 

54 

together parts that can construct/build the process, thereby providing understanding of the process 

55 

10,11,13,14,16–23,25–27,29,30

. Though nascent, this approach has proven powerful thus far 

10,31

. Using synthetic 

56 

juxtacrine receptors as parts to control cell-cell signaling processes, Morsut et al. demonstrated that such 

57 

processes can build complex multicellular multi-layered patterns 

31

. Adding differential adhesion as a part 

58 

illustrated that processes combining juxtacrine signaling with differential adhesion can build a variety of 

59 

3D multicellular patterned structures 

10

. These constructed processes provide insight into how basic 

60 

components such as cell signaling and adhesion expression can direct complex self-organization. 

61 

Moreover, these synthetic processes have features such as regeneration, cell fate divergence, and 

62 

symmetry breaking, providing insight into how these features occur in native multicellular developmental 

63 

processes 

10,31

64 

The majority of these bottom-up, synthetic development efforts emphasize activation. For 

65 

instance, the above works used a synthetic juxtacrine receptor to activate expression of a target gene 

66 

(Fig.1A) 

10,31

. With different fluorescent reporter and adhesion cadherin genes as the target gene, these 

67 

activatory circuits, when programmed into cells, yield developmental processes that can build a variety of 

68 

patterned, multicellular self-organizing structures (Fig.1A) 

10,31

69 

To date, inhibitory circuits, despite being integral to native multicellular developmental 

70 

processes, have been much less used in synthetic development (Fig.1B). Nonetheless, the few current 

71 

results support that inhibitory circuits could be a powerful strategy for building and understanding 

72 

multicellular development. For instance, using inhibitory circuits to build morphogen gradients revealed 

73 

that double negative signaling logic coupled with negative feedback improves gradient pattern formation 

74 

in the Sonic Hedgehog pathway 

14

. Using inhibitory circuits to inhibit morphogen activity allows the 

75 

formation of sharp gradient boundaries 

11

. Inhibitory circuits coupled with differential adhesion can drive 

76 

the formation of at least one type of patterned 3D structure 

10

77 

To investigate the potential of inhibitory circuits for bottom-up multicellular development, I 

78 

designed several generalizable synthetic inhibitory circuits. These circuits are driven by the synthetic 

79 

Notch (synNotch) receptor, a powerful, fully modular receptor that is capable of both activating and 

80 

inhibiting gene expression 

31,32

. Upon binding the juxtacrine cognate ligand, this receptor releases a 

81 

transcription factor controlling the gene of choice (Fig.1C) 

31,32

. For gene activation, an activating 

82 

transcription factor is released to drive target gene expression. For gene inhibition, the receptor can either 

83 

directly repress gene expression by releasing an inhibitory transcription factor 

31

 or indirectly by driving 

84 

expression of an inhibitory transcription factor that then represses target gene expression 

10

. The 

85 

flexibility of the synNotch receptor allowed me to design inhibitory circuits with varying temporal 

86 

dynamics for building and developing multicellular structures (Fig.1D-F) 

18

. In the published 

87 

accompanying study, I showed how activatory circuits with varying spatiotemporal control can be used 

88 

for bottom-up multicellular development 

18

89 

Moreover, use of the synNotch receptor allowed me to employ a previously validated 

90 

computational strategy. This enabled me to thoroughly explore the developmental capabilities of these 

91 

inhibitory circuits 

18,19

. In a previous work, my colleagues and I developed a mathematical and in silico 

92 

approach for modelling synNotch circuits that drive self-organization 

19

. The Generalized Juxtacrine 

93 

Signaling Model (GJSM) set of equations allows simple and intuitive modeling of synNotch circuits. 

94 

SynNotch circuits are first converted to GJSM equations and then implemented into in silico cells (via a 

95 

framework such as the cellular Potts model 

33–35

). This computational approach can successfully predict 

96 

the developmental structures that result from programming in vitro cells with synNotch circuits 

19

. This 

97 

computational approach is ideal for exploring these circuits’ capabilities for bottom-up multicellular 

98 

development; I can rapidly and systematically investigate circuit behavior across different parameters 

18

.  

99 

Here, I show that the designed inhibitory circuits are capable of their intended behavior. More 

100 

importantly, when these circuits are combined with differential adhesion and implemented into in silico 

101 

cells, these inhibitory circuits give rise to a variety of patterned multicellular structures. Of the structures 

102 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

 

 

obtained, the model predicts the only known in vitro patterned structure (expected as this was 

103 

demonstrated in the original study 

19

), but the model also predicts that this only known structure is but a 

104 

fraction of the morphologies possible. Further examination of the various structures indicated that one 

105 

circuit is capable of morphological oscillations, but these oscillations dampen quickly, suggesting that 

106 

further temporal regulation is required. Incorporating activating transcriptional amplifiers to additionally 

107 

modulate temporal control revealed that the amplifiers can not only improve, but even rescue oscillations. 

108 

These results support that inhibitory circuits can be powerful tools for bottom-up synthetic development. 

109 

 

110 

RESULTS 

111 

Design of the synthetic inhibitory circuits. 

112 

The direct inhibition circuit is the simplest of the designed inhibitory circuits, using a synNotch 

113 

receptor that, upon binding its juxtacrine cognate ligand, releases a transcriptional repressor inhibiting 

114 

expression of the target gene (Fig.1D) 

31

. Because repression is directly mediated by the synNotch 

115 

receptor, this circuit is highly dependent on the presence of cognate ligand to maintain gene repression; 

116 

loss of the signaling ligand should quickly result in decrease of gene repression 

18,31,32

. Thus, this design 

117 

offers basic spatial control with minimal temporal control 

31,32

118 

To demonstrate how inhibitory circuits can be used for bottom-up multicellular development, it 

119 

would be ideal to also test other inhibitory circuits with additional levels of temporal control. I therefore 

120 

designed two additional circuits: the temporary inhibition circuit and 2-transcription factor (2-TF) 

121 

permanent inhibition circuit.  

122 

In the temporary inhibition circuit, I take advantage of the synNotch receptor’s modularity to also 

123 

activate gene expression 

10,31,32

. The synNotch receptor drives expression of an inhibitory transcription 

124 

factor (ITF) that then inhibits target gene expression (Fig.1E) 

10

. Repression is now dependent on the ITF 

125 

level, rather than the synNotch signal, and thus gene repression should continue even when synNotch 

126 

signaling is lost, as long as the ITF remains elevated enough to continue repression. Compared to the 

127 

direct inhibition circuit, this circuit should enable temporarily prolonging gene repression. 

128 

In the 2-transcription factor (2-TF) permanent inhibition circuit, the synNotch receptor activates 

129 

expression of both an activating transcription factor (ATF) and an inhibitory transcription factor (ITF) 

130 

(Fig.1F). An example gene cassette would be the ATF and ITF genes linked by an internal ribosomal 

131 

entry site or ribosomal skipping site, and expression controlled by a promoter activated by the synNotch 

132 

receptor. The ATF drives itself and the ITF, providing a positive feedback loop for permanent ITF 

133 

expression and thus should result in permanent gene repression 

18,36–38

134 

 

135 

Circuits inhibit gene expression with temporal control over repression as designed. 

136 

With the circuits designed, I converted them into GJSM equations and implemented them into in 

137 

silico cells using the CompuCell3D cellular Potts framework 

33,34

. This combination was previously tested 

138 

for modeling synNotch circuits for bottom-up multicellular development 

18,19

. See prior works 

18,19

 and the 

139 

Methods section for more details. I then tested these circuits for their temporal control over gene 

140 

repression. Blue cells, blue as they constitutively express blue reporter, were programmed to express a 

141 

synNotch receptor that responds to orange ligand on orange cells (Fig.2A). In the direct inhibition circuit, 

142 

the synNotch receptor directly inhibits blue reporter expression (Fig.2A). In the temporary inhibition 

143 

circuit, the synNotch receptor drives an ITF that then inhibits blue reporter expression (Fig.2A). In the 2-

144 

TF permanent inhibition circuit, the synNotch receptor drives both an ATF and ITF. The ATF acts as a 

145 

permanent amplifier of ITF expression and ITF inhibits blue reporter expression (Fig.2A) 

18

. I then tested 

146 

these cells for their temporal control over gene repression using a simple cell-cell signaling setup from the 

147 

accompanying study that examines activatory circuits 

18

148 

A blue cell, imbued with one of the inhibitory circuits, is seeded with 3 orange sender cells. Cells 

149 

are cubic and frozen (i.e. locked in shape, volume, and surface area) to maintain consistent synNotch 

150 

signaling (Fig.2B). At 25000 timesteps, orange senders are deleted to test how ligand and synNotch 

151 

signaling loss affects repression (Fig.2B). This setup allows controlling the exact level of synNotch 

152 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

 

 

signaling at a given time, thus enabling simultaneous testing of the circuit’s ability to inhibit reporter 

153 

expression and temporality of repression 

18

154 

In GJSM equations for synNotch circuits, gene expression and repression are modelled by several 

155 

parameters. For gene activation or gene expression, 

β models gene expression difficulty while for 

156 

inhibition or gene repression, 

β models gene repression difficulty. Higher values of β model higher 

157 

expression/repression difficulties while lower values model lower expression/repression difficulties. 

158 

Lower 

β values, however, do increase the risk of background gene expression/repression 

18,19

.  

κ models 

159 

protein product degradation rate/saturation levels. See the accompanying study 

18

, the original study 

19

 or 

160 

the Methods section for further details. 

161 

I therefore first checked the circuits for background gene inhibition. At reporter repression 

162 

difficulties (

β reporter) ≥1000, there was no background repression in all designed circuits (SFig.1A). I 

163 

then tested the circuits at higher repression difficulties and found that all circuits were able to yield 

164 

reporter repression (Fig.2C). The direct inhibition circuit was able to inhibit reporter expression up to 

β 

165 

reporter=3000 and as predicted, had high spatial but minimal temporal control. Loss of synNotch 

166 

signaling via loss of orange neighbors at 25000 timesteps resulted in immediate loss of blue reporter 

167 

repression (Fig.2C). This temporal dynamic is consistent with reported synNotch signaling dynamics in 

168 

vitro 

18,31,32

.  

169 

In contrast, the temporary inhibition circuit repressed reporter expression up to 

β reporter=12000 

170 

and maintained inhibition for some time even after loss of orange neighbors (Fig.2C). Reporter levels 

171 

eventually increased once again (Fig.2C) due to the ITF’s reliance on synNotch signaling to remain 

172 

elevated (SFig.1B), confirming the design as a temporary inhibition circuit. The 2-TF permanent 

173 

inhibition circuit repressed reporter expression up to 

β reporter=18000 and maintained permanent blue 

174 

reporter repression even after loss of the orange neighbors (Fig.2C). This is due to the ATF’s positive 

175 

feedback loop allowing permanent ITF expression and thus permanent reporter repression, confirming the 

176 

circuit’s design as a permanent inhibition circuit (SFig.1B). 

177 

Similar results were obtained with 1 and 6 orange sender neighbors (data not shown). While all 

178 

the inhibition circuits operate as designed, it is important to note that they fail at some parameter sets. 

179 

Thus, circuit behavior is not solely defined by circuit design, but by its parameters as well 

18

180 

 

181 

Temporary inhibition circuit can build a variety of patterned multicellular structures. 

182 

 

With data supporting that the inhibitory circuits function as designed, I then tested the circuits’ 

183 

for their ability to build and develop multicellular structures. A version of the temporary inhibition circuit, 

184 

the lateral inhibition circuit, has been shown capable of driving bottom-up synthetic development in vitro 

185 

10

. In this circuit, cells signal to one another via a CD19 synNotch interaction to drive expression of the 

186 

transcriptional repressor tTs and the adhesion protein E-cadherin (gene is ECAD) (Fig.3A). tTs repressor 

187 

then inhibits expression of the CD19 ligand. L929 mouse fibroblasts programmed with this circuit 

188 

reliably form only one type of patterned structure, a 2-layered structure with CD19

-

 E-cadherin

+

 green 

189 

cells and CD19

+

 E-cadherin

+

 yellow cells in the center (Fig.3B). CD19

+

 E-cadherin

-

 red cells form the 

190 

peripheral ring (Fig.3B). 

191 

The robust formation of the 2-layered structure is likely due to the lateral inhibition circuit being 

192 

partially calibrated 

10

, thereby limiting the structures buildable. However, systematically investigating the 

193 

generalized version of the lateral inhibition circuit, the temporary inhibition circuit, revealed that this 

194 

circuit design can form a wealth of patterned structures (Fig.3E and SFig.2A). The circuit was 

195 

implemented in in silico L929 (ISL929) cells 

18,19

 to parallel the in vitro implementation. I tested a wide 

196 

range of expression difficulties for ITF/ECAD (ITF is generic representation of tTS, gene representation 

197 

is ITF) and repression difficulties for blue ligand (blue ligand is generic representation of CD19, gene is 

198 

BLUE-L). A cell color guide is given in Fig.3D. Scanned parameters are in SFig.2A. 

199 

Several structure types were formed, ranging from types 1 and 6 of highly homogenous E-

200 

cadherin

+

 spheroids to 3, 4, 5, and 7 for 2-layered structures to 2 for mixed E-cadherin

-

 spheroids 

201 

(Fig.3E). Representative structure types are shown and additional structures, organized by the parameters 

202 

that generated them, are given in SFig.2A. Out of all the structure types obtained, only one (type 5 of 

203 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

 

 

Fig.3E), was the 2-layered structure built by the lateral inhibition circuit (Fig.3B). These results indicate 

204 

that the temporary inhibition circuit can build a variety of patterned, multicellular structures. The only 

205 

known in vitro example is but a fraction of the structures possible. 

206 

 

207 

Direct inhibition circuit and 2-TF permanent inhibition circuit can also build a variety of patterned 

208 

multicellular structures. 

209 

Testing the direct inhibition circuit and 2-TF permanent inhibition circuit revealed that both 

210 

circuits can also generate a variety of patterned structures. The direct inhibition circuit built structure 

211 

types ranging from types 1 and 3 of heterogenous E-cadherin

+

 spheroids to 4, 6, and 7 for 2-layered 

212 

structures to 2 and 5 for E-cadherin

-

 spheroids (Fig.4A). The full gallery of structures, organized by the 

213 

parameters that generated them, is given in SFig.2B.  

214 

Likewise, the 2-TF permanent inhibition circuit also proved capable of building various patterned 

215 

structures. Structure types ranged from 1 and 4 for highly homogenous E-cadherin

+

 spheroids to 2, 3, and 

216 

5 for 2-layered structures (Fig.4B). Interestingly, this circuit yields less structure types compared to the 

217 

other two, possibly due to its permanency in gene repression. The full gallery of structures, organized by 

218 

the parameters that generated them, is given in SFig.2C. 

219 

Altogether, these results (Figs.3-4, SFig.2) demonstrate that inhibitory circuits can be powerful 

220 

tools for building multicellular structures. 

221 

 

222 

Temporary inhibition circuit can build oscillatory structures. 

223 

 

Of the diverse structures built by the inhibitory circuits, the homogenous spheroids of the 

224 

temporary inhibition circuit (structures of types 1 and 6 of Fig.3E) were of notable interest. During the 

225 

development of these structures, cells were highly uniform in the expression state of ITF/E-cadherin and 

226 

blue ligand (i.e. all cells were ITF/E-cadherin

+

 blue ligand

+

 or ITF/E-cadherin

+

 blue ligand

-

 etc, see 

227 

Fig.3D for all possible expression states and cell color for each state). Cells then synchronously 

228 

transitioned from one expression state to another expression state (i.e. cells transitioned from one color to 

229 

another color at a similar time). An example development with these features is shown in Fig.5A. These 

230 

features are strikingly similar to those observed with oscillations in development 

6,35,39,40

. Because 

231 

temporary gene repression is known to drive oscillation 

6,35,39–43

, I hypothesized that the temporary 

232 

inhibition circuit can build morphological oscillators (Fig.5B). 

233 

Extending the simulation time to 100000 timesteps for the pink outlined structures of SFig.2A 

234 

revealed that the temporary inhibition circuit can indeed build morphological oscillators (Fig.5C-D, 

235 

SFig.3). An initial structure of blue cells sharply transitions to cyan before transitioning to red and then 

236 

gray before repeating the cycle (Fig.5C). Testing the circuit with a higher blue ligand repression difficulty 

237 

β BLUE-L=11000 built a morphological oscillator that skipped the gray and blue phases, yielding a cyan 

238 

red oscillator (Fig.5D). Oscillators with the remaining parameters (

β BLUE-L=16000, 21000) are given in 

239 

SFig.3. All these oscillations were highly reproducible and consistent (n=3 each). 

β BLUE-L=1000 was a 

240 

notably poor oscillator (SFig.3C). With the same parameters, the direct inhibition circuit and 2-TF 

241 

permanent inhibition circuit did not yield oscillatory structures, confirming that temporary gene 

242 

repression is the driver of oscillation (SFig.4) 

6,35,39–43

243 

 

244 

Additional temporal control via activating amplifiers improves oscillation quality. 

245 

In addition to being able to build multicellular structures, inhibitory circuits can also generate 

246 

morphological oscillations, demonstrating their potential for bottom-up synthetic development. It would 

247 

be even more powerful, however, if the oscillations could be further modified and improved. The 

248 

morphological oscillations generated by the temporary inhibition circuit dampened quickly (Fig.5C-D). 

249 

These results were confirmed by running the simulations for longer (SFig.5A,C). 

250 

In the accompanying study 

18

, I showed how activatory circuits, through activating transcriptional 

251 

amplifiers, can be used to enact spatiotemporal control over gene expression in bottom-up multicellular 

252 

development. As temporary gene repression is what drives oscillation, I reasoned that using an activating 

253 

amplifier to control the temporary gene repression of the temporary inhibition circuit could improve 

254 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

 

 

oscillation (Fig.6A). The circuit design (Fig.6B) is a simple modification of the temporary inhibition 

255 

circuit; it uses an activating amplifier to control the inhibitory circuit of Fig.3C. The synNotch receptor 

256 

now drives an activating amplifier consisting of an activating transcription factor (ATF) (Fig.6B). The 

257 

ATF then drives expression of E-cadherin and ITF (Fig.6B). ITF then inhibits blue ligand expression as in 

258 

the original circuit (Fig.6B). 

259 

Using the same parameters as the temporary inhibition circuit oscillator of Fig.5C and SFig.5A, 

260 

the amplified oscillator improved morphological oscillation (Fig.6C). I compared oscillation quality 

261 

between circuits using the number of cyan phases completed before half amplitude (ring-down method in 

262 

signal analysis) 

44

. I chose the cyan phase for quantification as it is present in all oscillators (i.e. cyan red 

263 

oscillators lack gray and blue phases (Fig.5D)) and does not have constant drift (i.e. see SFig.7B). 

264 

Compared to its non-amplified variant (Fig.5C and SFig.5A), the amplified oscillator (Fig.6C) was 

265 

approximately a 1.5-fold improvement in oscillation quality (3 cyan phases to 2 cyan phases). Due to 

266 

prolonged inhibition from the activating amplifier 

18

, oscillation took notably longer, requiring almost 

267 

400000 timesteps for the three cycles (Fig.6C). Dampening was also observed but is notably less 

268 

prominent. The oscillator of SFig.5A had red cell percentage quickly drift up with each red phase (5% to 

269 

20% to 50%) (SFig.5A). In contrast, the amplified oscillator had a much lower drift (0% to 5% to 20%) 

270 

(Fig.6C).  

271 

Similar results were obtained for the 

β ECAD/ITF=1000 β BLUE-L=11000 amplified oscillator 

272 

(SFig.5B). The amplified oscillator was at least a 1.3-fold improvement in oscillation quality compared to 

273 

its non-amplified counterpart (SFig.5C) (4 cyan phases to 3 cyan phases). The oscillation occurred over a 

274 

longer duration due to prolonged inhibition from the activating amplifier as expected (SFig.5B). 

275 

Dampening was observed but the amplified oscillator only had red percentage drift from 5% to 10% to 

276 

20% in the observed red phases (SFig.5B) while in the equivalent red phases of the oscillator, drift was 

277 

from 0% to 40% to 70% (SFig.5C).  

278 

To confirm that oscillations are not limited to 

β ECAD/ITF=1000 circuits, I tested if β 

279 

ECAD/ITF=6000 circuits could also generate oscillatory structures. Oscillators with 

β ECAD/ITF=6000 

280 

and 

β BLUE-L=1000 or 6000 generated no oscillations (SFig.6A and SFig.7A). However, the amplified 

281 

oscillator circuits were able to oscillate (SFig.6B and SFig.7B). These results indicate that incorporating 

282 

activating amplifiers can not only improve, but even rescue oscillations.  

283 

These results, in conjunction with those of Fig.5 and SFig.3, indicate that inhibitory circuits are 

284 

powerful tools for achieving morphological oscillations. These circuits can be flexibly modified with 

285 

additional circuits to alter their oscillatory behavior, supporting their utility for bottom-up synthetic 

286 

development. 

287 

 

288 

DISCUSSION 

289 

The bottom-up approach is an emerging but powerful strategy for studying multicellular 

290 

development. Most bottom-up efforts focus on activatory circuits to drive synthetic development, but in 

291 

this study, I show that inhibitory circuits can also be powerful tools for driving development. Via an in 

292 

silico approach, I show that the designed inhibitory circuits can build a variety of patterned multicellular 

293 

structures. A systematic parameter scan reveals that the only known inhibitory structure to date is but a 

294 

fraction of the structures possible with inhibitory circuits. Further examination of one circuit revealed that 

295 

it is capable of morphological oscillations and that these oscillations could be improved by using 

296 

activatory circuits from the accompanying study. Altogether, these results support that inhibitory circuits 

297 

can be powerful tools for building and studying developmental processes. 

298 

 

To demonstrate how inhibitory circuits can be used to build multicellular structures, I employed a 

299 

previously tested computational approach 

18,19

. By combining the GJSM with a cellular Potts framework, I 

300 

was able to test the circuits across a variety of parameter combinations and show the numerous different 

301 

morphologies buildable from these circuits (Fig.3-4, SFig.2) 

18,19,34

. This computational setup has been 

302 

validated for modelling and predicting the self-organizing structures that arise from synNotch circuits 

303 

driving differential adhesion 

19

. Nonetheless, I recognize that a key limitation of computational studies is 

304 

experimentational validation. Unfortunately, as an independent investigator, I lack all the fundings and 

305 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

 

 

resources to perform any of the analogous biological experiments. With this limitation in mind, at the 

306 

inception of this study, I deliberately designed and chose to test the direct inhibition circuit and temporary 

307 

inhibition circuit as specific biological versions of these circuits exist 

10,31

. The specific version of the 

308 

direct inhibition circuit uses Gal4-KRAB as the inhibitory transcription factor 

31

. Its inhibition and 

309 

temporal dynamics are consistent with the results obtained for the direct inhibition circuit in Fig.2C. The 

310 

specific version of the temporary inhibition circuit, the lateral inhibition circuit (Fig.3A), served as an 

311 

additional check for my strategy. The lateral inhibition circuit’s only known structure was predicted by 

312 

the in silico approach (Fig.3E), confirming the results of the previous study 

19

 and supporting the validity 

313 

of the computational approach. The in silico approach additionally predicted a variety of other structures 

314 

yet to be obtained in vitro (Fig.3E), but this reflects a difference in methodology. The in vitro lateral 

315 

inhibition circuit was partially calibrated 

10 

, thereby limiting the types of structures buildable, while the in 

316 

silico temporary inhibition circuit was systematically examined across numerous different parameters.  

317 

 

In addition, the in silico model also predicts that the temporary inhibition circuit is capable of 

318 

morphological oscillations (Fig.5, SFig.3). Temporary repression is well-known to drive oscillations in 

319 

single cells, but it has yet to be shown how oscillations in multiple cells can drive synthetic multicellular 

320 

development 

41–43,45,46

. This result would be particularly interesting to test biologically, as it could 

321 

demonstrate that inhibitory circuits can build dynamic structures as well. Such results would indicate that 

322 

inhibitory circuits are indispensable tools for bottom-up synthetic development. 

323 

 

As in the accompanying study 

18

, I designed the circuits generically to accommodate the rapidly 

324 

increasing toolkit of synthetic biology 

31,38,47–62

. I leave the component choice to the user so that future 

325 

components can be incorporated and tested. For example, typical transcription factors (TFs) at the time of 

326 

the lateral inhibition circuit included the ATFs Gal4-VP64, LexA-VP64, tTa and ITF Gal4-KRAB 

327 

31,32,38,63–65

. Since then, however, new TFs have emerged with improved compatibility and modularity 

47–

328 

49,66

.  

329 

These TF development efforts, like most bottom-up efforts, notably focus on gene activation. For 

330 

bottom-up approaches to advance, there needs to be efforts towards developing new and improved ITFs 

331 

as well. As an example, the direct inhibition circuit that builds multicellular structures (Fig.4A) requires a 

332 

bifunctional transcription factor that can both inhibit and activate gene expression. Such a transcription 

333 

factor has yet to be engineered and used for multicellular synthetic development, but natural bifunctional 

334 

transcription factors do exist and could be a viable starting point for this component 

67–70

335 

Though the circuits here are relatively basic in design, they can build a wealth of patterned 

336 

multicellular structures and even morphological oscillations. They even have features of native 

337 

developmental processes such as cell fate divergence, self-organization, and synchronized oscillation. 

338 

“Build-it-to-understand-it” efforts with inhibitory circuits could advance our understanding of native 

339 

multicellular developmental processes. Beyond multicellular development, inhibitory circuits, like 

340 

activatory circuits, could potentially be used for therapeutic purposes as well such as regenerative 

341 

medicine and synthetic organ development 

18,21,23,24

. This work supports future research on inhibitory 

342 

circuits, and I hope it will promote the use of inhibitory circuits in multicellular synthetic biology. 

343 

 

344 

ACKNOWLEDGEMENTS 

345 

I would like to thank UNMC for access to and aid in printing research articles. I am thankful to the three 

346 

anonymous reviewers of my previous article 

18

 as their suggestions have also helped improve this 

347 

manuscript. 

348 

 

349 

AUTHOR CONTRIBUTIONS 

350 

C.L. conceived, designed, performed, analyzed, and wrote the entire study. 

351 

 

352 

DECLARATION OF INTERESTS 

353 

I declare no competing or financial interests. 

354 

 

355 

FUNDING 

356 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

 

 

This work was not funded by any private or public agency. This work was solely funded by the author. 

357 

 

358 

METHODS 

359 

Key Resource Table 

360 

SOFTWARE AND ALGORITHMS 

SOURCE 

IDENTIFIER 

CompuCell3D (CC3D) v3.7.8 

34

 

RRID:SCR_003052

 

Mathematica v12.0.0.0 

Wolfram Research 

RRID:SCR_014448

 

Excel v2310 

Microsoft 

RRID:SCR_016137

 

General Juxtacrine Signaling Model (GJSM) 

19

 N/A 

Activating Transcriptional Amplifiers in GJSM 

18 

N/A 

 

361 

Lead Contact 

362 

Requests for 

information and code

 should be directed to 

Calvin Lam (

calvin.lam.k@gmail

).

 

363 

 

364 

In silico cell line ISL929. 

365 

 

ISL929 is an in silico cell line developed in 

19

 to model the in vitro L929 cell line used for 

366 

building multicellular structures with the synNotch receptor 

10

. This line was developed in the 

367 

CompuCell3D cellular Potts framework 

34

 and has been used with the Generalized Juxtacrine Signaling 

368 

Model (GJSM) to successfully predict how synNotch circuits can drive multicellular development 

19

369 

Because the lateral inhibition circuit was implemented in L929 cells 

10

, ISL929 served as the ideal in 

370 

silico cells for this study. It would allow me to check the previous study’s results 

19

 while also providing a 

371 

biological experiment start point such as testing the inhibitory circuits from this study in L929 cells. A 

372 

brief description of ISL929 is given in the accompanying study 

18

 and a complete description is in the 

373 

original study 

19

374 

 

375 

Overview of the Generalized Juxtacrine Signaling Model. 

376 

 

The Generalized Juxtracine Signaling Model (GJSM) was developed to model synthetic 

377 

juxtacrine receptor (i.e. synNotch 

10,31

, SNIPR 

62

) regulation of gene expression 

19

. When parameterized, 

378 

the model can capture synthetic juxtacrine receptor signaling dynamics and has successfully predicted the 

379 

developmental structures that arise from synNotch-based differential adhesion circuits 

19

. A brief 

380 

description of the relevant model features is given below. Full descriptions can be found in 

18,19

381 

Gene expression by a synthetic juxtacrine receptor such as synNotch can be described by the 

382 

general equation 

 

383 

1

1     

 

 

The change in the expressed gene’s protein level R at a given timestep t is a function of both 

384 

production (first term) and degradation (second term). In the production term, signal S models receptor or 

385 

activating transcription factor (ATF) signaling driving gene expression. 

β models gene expression 

386 

difficulty and encompasses the biological processes that affect gene to functional protein product such as 

387 

such as promoter, transcription, translation, trafficking inefficiencies, and expression delay, etc 

18,19

388 

Degradation (second term) is modelled by the standard linear decay model. Protein product level 

389 

R decays proportional to itself and inverse to decay constant 

κ. As a result, κ controls not only decay rate 

390 

but saturation level as well.  

391 

The logistic form was chosen for GJSM over the Hill form for several reasons as described in the 

392 

original study 

19

 and accompanying study 

18

. First, the logistic form has simple and intuitive parameter 

393 

interpretations that allow a user new to modeling to easily start. Weighing S against 

β allows a user to 

394 

quickly understand how expression difficulty and signal affects expression. If S largely exceeds 

395 

expression difficulty, then expression is easy. If expression difficulty largely exceeds S, then expression is 

396 

difficult. Second, because the logistic form is mathematically equivalent to the Hill form, a more 

397 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

 

 

advanced user can convert the logistic equations to Hill equations to obtain more biologically relevant 

398 

parameters if desired 

18,71,72

399 

Because the logistic function is equivalent to the Hill function, GJSM is also capable of modeling 

400 

gene repression. This was shown in the original study 

19

.  Gene repression in GJSM can be described by 

401 

the equation  

402 

1

1     

 

 

This form is mathematically obtained by transforming the expression equation with S to -S and 

β 

403 

to – 

β 

19

. Signal S now models receptor or inhibitory transcription factor (ITF) signaling inhibiting gene 

404 

expression. 

β now models gene repression difficulty and still encompasses the processes of gene to 

405 

functional protein product as in the expression equation. Intuitive interpretations remain and degradation 

406 

modelling remains the same as in the expression equation. 

407 

 

408 

Inhibitory circuits as modelled by GJSM. 

409 

 

With the general equations described, equation sets for the inhibitory circuits can now be defined. 

410 

 

411 

Direct Inhibition Circuit 

412 

 

In the direct inhibition circuit, the synNotch receptor directly inhibits target gene expression 

413 

(Fig.1D). Then, the circuit equation is 

414 

 

415 

1

1   

ௌ௃ோ

 1

1

 

 

416 

S

SJR

 is the number of activated synNotch receptors at a given timestep, with activated meaning 

417 

bound to cognate ligand and released its transcription factor. Parameters are as described above for 

418 

inhibitory circuits. How S

SJR

 is calculated is in a below section. 

419 

In the direct inhibition circuit for building multicellular structures (Fig.4A), the synNotch 

420 

receptor also drives expression of the adhesion protein E-cadherin. E-cadherin levels are described by  

421 

 

422 

1

1   

ௌ௃ோ

 2

2

 

 

423 

S

SJR

 is the number of activated synNotch receptors at a given timestep. Parameters are as 

424 

described above for activatory circuits. How S

SJR

 is calculated is in a below section. 

425 

 

426 

Temporary Inhibition Circuit/Oscillator Circuit 

427 

 

In the temporary inhibition circuit/oscillator circuit, the synNotch receptor indirectly inhibits gene 

428 

expression by driving expression of an inhibitory transcription factor (ITF) that then inhibits target gene 

429 

expression (Fig.1E). ITF levels are described by  

430 

 

431 

1

1   

ௌ௃ோ

 1

1

 

 

432 

Parameters are as described above for activatory circuits. Target gene product level R is then 

433 

described by the inhibitory equation 

434 

 

435 

1

1   

ூ்ி

 2

2

 

 

436 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

10 

 

 

S

ITF

 is the ITF level at a given timestep from solving the first equation in the circuit. Parameters 

437 

are as described above for inhibitory circuits. 

438 

In the temporary inhibition circuit for building multicellular structures (Fig.3) or oscillators 

439 

(Fig.5), the synNotch receptor, in addition to driving the ITF, also drives expression of E-cadherin. To 

440 

simplify the number of parameters and equations used per circuit, E-cadherin levels are described by the 

441 

ITF equation.  

442 

 

443 

1

1   

ௌ௃ோ

 1

1

 

 

444 

However, if desired, E-cadherin can be defined separately from ITF with its own parameters 

445 

governing expression difficulty and decay. 

446 

 

447 

2-Transcription Factor (2-TF) Permanent Inhibition Circuit 

448 

 

In the 2-TF permanent inhibition circuit, the synNotch receptor drives expression of the activating 

449 

transcription factor (ATF) and ITF (Fig.1F). The ATF is also able to drive expression of the ATF and ITF 

450 

(Fig.1F). Then, ATF levels are described by 

451 

 

452 

1

1   

ௌ௃ோ

 

஺்ி

  1

1

 

 

453 

S

ATF

 is the ATF level from solving this equation at a given timestep. Parameters are as described 

454 

above for activatory circuits. 

455 

To simplify parameters and equations used and because the ITF is linked to ATF expression, the 

456 

ITF is assigned the same equation  

457 

 

458 

1

1   

ௌ௃ோ

 

஺்ி

  1

1

 

 

459 

The ITF then inhibits target gene expression as in the temporary inhibition circuit. Thus, the 

460 

equation is 

461 

1

1   

ூ்ி

 2

2

 

 

462 

In the 2-TF permanent inhibition circuit for building multicellular structures (Fig.4B), in order to 

463 

avoid the use of hybrid combinatorial promoters, which are not tested with GJSM 

18

, E-cadherin must be 

464 

controlled by the same type of promoter as the ATF/ITF. Because ATF is able to drive expression of itself 

465 

through this promoter, E-cadherin must also be driven by the ATF. E-cadherin is also driven by the 

466 

synNotch receptor. Then, to simplify the number of parameters and equations used per circuit, E-cadherin 

467 

levels are described by the ATF/ITF equation  

468 

 

469 

1

1   

ௌ௃ோ

 

஺்ி

  1

1

 

 

470 

As in the temporary inhibition circuit, E-cadherin can be defined separately from ATF/ITF with 

471 

its own parameters if desired. 

472 

 

473 

Amplified Oscillator Circuit (Temporarily Amplified Activation Circuit Controlling Temporary Inhibition 

474 

Circuit) 

475 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

11 

 

 

In the amplified oscillator circuit, a temporarily amplified activation circuit controls the 

476 

temporary inhibition circuit (Fig.6B). The synNotch receptor drives expression of an ATF that then 

477 

controls the temporary inhibition circuit.  

478 

The ATF equation is as in the published accompanying study 

18

 

479 

 

480 

1

1   

ௌ௃ோ

 1

1

 

 

481 

This ATF then drives expression of ITF and E-cadherin, replacing the role of the synNotch 

482 

receptor in the temporary inhibition circuit. Then, the equations are 

483 

 

484 

1

1   

஺்ி

 2

2

 

 

485 

1

1   

஺்ி

 2

2

 

 

486 

Finally, the ITF then inhibits target gene expression as in the temporary inhibition circuit. Thus, 

487 

the equation is 

488 

1

1   

ூ்ி

 3

3

 

 

489 

For the equations of each circuit, parameters that do not change between equations are denoted 

490 

with the same variable (i.e. 

β1 is the same across all equations in the same circuit). However, it is 

491 

important to note that parameters can be set differently between equations if desired. This confers 

492 

additional flexibility in modeling, but increases the parameters used for a circuit. Parameters are given in 

493 

Supplementary Table 1. 

494 

 

495 

Programming ISL929 cells with circuits and receptors. 

496 

Having defined the equations for each circuit, I then implemented them into ISL929 cells. See 

497 

SFig.1A of the accompanying study for a graphical depiction of this process 

18

. I then added the 

498 

appropriate constitutive ligands into the appropriate cells (i.e. orange ligand on orange cells). I also added 

499 

synNotch to the appropriate cells as well. To simplify calculations, I assumed synNotch to be in excess 

500 

and non-limiting as in the reference and accompanying studies 

10,18,19

. If desired, the complete GJSM 

501 

framework can be used to model receptor limiting cases. See the original study 

19

 for the receptor limiting 

502 

formulation of GJSM. With these rules defined, it is now possible to calculate the signal S

SJR

 from 

503 

synNotch signaling in the circuit equations. The relevant calculations are given here. The complete 

504 

description and generalized formula can be found in the original study 

19

505 

 

 SynNotch functions in a 1:1 stoichiometry; one activated receptor releases one transcription 

506 

factor regulating the target gene 

18,19,31,32,62

. Because I assume synNotch to be in excess, S

SJR

 can be 

507 

calculated from the amount of cognate ligand a focal cell is exposed to at the given timestep. Then, S

SJR

 

508 

for a focal cell 

σ can be calculated using the equation 

509 

 

510 

ௌ௃ோ

   ! ! #  $ #%&%' ( )  

*

 ! ! (

ௌே

 

 

511 

This formula is from the original GJSM study 

19

. For a focal cell 

σ, it receives SJR signal S

SJR

 

512 

calculated from the total number of cognate ligand it is exposed at a given timestep. For each signaling 

513 

neighbor (SN) with the cognate ligand, L is the amount of cognate ligand on its surface. Dividing L by the 

514 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

12 

 

 

SN’s surface area yields the ligand density. Multiplying this density by the shared surface area between 

515 

the focal cell and SN gives the amount of ligand the focal cell sees from that single SN. Summing over all 

516 

SNs then gives the total number of cognate ligand the focal cell is exposed to at a given timestep and 

517 

yields S

SJR

.  

518 

L is a constant value for a constitutive ligand like orange ligand, but for a ligand that is inhibited 

519 

by the signaling circuit (i.e. blue ligand), L is defined by R in the circuit equations. Parameters are given 

520 

in Supplementary Table 1. 

521 

 

522 

Linking expression and repression to behavior. 

523 

 

I linked expression and repression to intended behavior using a discrete transition model as in the 

524 

original and accompanying study 

18,19

. Cells with protein product level exceeding the threshold (7000 for 

525 

all simulations in this study) gained the feature of the protein product. For example, exceeding 7000 for 

526 

E-cadherin levels allows cells to be adhesive to other E-cadherin expressing cells. Falling under this 

527 

threshold results in cells losing the feature. For example, E-cadherin levels falling under 7000 reverts 

528 

cells to non-adhesive. 

529 

 

530 

General simulation conditions. 

531 

Cells were initialized as a 5x5x5 pixel cube in a 100x100x100 lattice. For the cell-cell signaling 

532 

setup, initial configuration is specified in the results section. For the building multicellular structure 

533 

experiments, cells were seeded as a spherical blob at the center of the lattice. The seeded number of cells 

534 

in each blob is given per experiment. Data was collected every 100 timesteps for analysis. Simulation 

535 

runtime is given per experiment.  

536 

 

537 

Cell-cell signaling assay. 

538 

 

Assay was performed as described in the results section and in the accompanying study 

18

539 

Parameters are given in Supplementary Table 1. 

540 

 

541 

Structure images. 

542 

Representative cross sections of the structures are shown as in the reference in vitro experiment 

543 

10

. Scalebar is 17.5 pixels to 100 um as determined in the original study 

19

544 

 

545 

Cell percentage quantification. 

546 

 

 Cell percentage was calculated by dividing the number of cells of the focal type over total 

547 

number of cells in the simulation at that timestep. 

548 

 

549 

Mitosis removal. 

550 

 

I removed cell growth and mitosis in oscillation simulations with runtime >100000 timesteps. 

551 

The longer runtime required for observing oscillation along with its termination would otherwise result in 

552 

cells completely filling the lattice and slowing the simulation significantly. I validated that growth and 

553 

mitosis removal did not affect oscillation (compare Fig.5C to SFig.5A, Fig.5D to SFig.5C). Cells sharply 

554 

transitioned at the same timepoints and transitioned to the correct phase independent of growth and 

555 

mitosis. 

556 

 

557 

Comparing oscillation quality. 

558 

 

To roughly compare oscillation quality between circuits, I calculated the quality factor Q for each 

559 

oscillation using the ring-down method 

44

. Q, the quality of the oscillation, can be defined proportionate to 

560 

the number of oscillations before the oscillation decays to 50% of its maximum amplitude. I used 100% 

561 

as the maximum amplitude and chose to calculate Q off the cyan phase of the oscillation as it is present in 

562 

all oscillators and does not have constant drift. Q was then compared between circuits to calculate the fold 

563 

improvement. 

564 

 

565 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

13 

 

 

Statistical analysis. 

566 

Sample size is given in the text, figures, or captions. Plots are mean±SEM.  

567 

 

568 

FIGURE LEGENDS 

569 

Figure 1. Design of the synthetic inhibitory circuits for bottom-up multicellular development.  

570 

A) The majority of bottom-up “build-it-to-understand-it” approaches for multicellular development use 

571 

activatory circuits. A target gene is activated to drive development. Such circuits are capable of building 

572 

multitudes of structures. B) Inhibitory circuits, in contrast, are rarely used in the bottom-up approach. Are 

573 

they also capable of building various multicellular structures? C) The synthetic Notch (synNotch) 

574 

receptor is a synthetic receptor modular in both ligand binding and intracellular domain. Ligand binding 

575 

domain allows sensing a ligand of choice and intracellular domain allows releasing an activating or 

576 

inhibitory transcription factor of choice. D) The direct inhibition circuit has the synNotch receptor release 

577 

an inhibitory transcription factor to directly repress target gene expression 

31

. E) The temporary inhibition 

578 

circuit has the synNotch receptor first drive an inhibitory transcription factor (ITF) that then represses 

579 

target gene expression. This circuit should result in temporarily prolonging gene repression. F) The 2-TF 

580 

permanent inhibition circuit has the synNotch receptor drive a transgene cassette with an activating 

581 

transcription factor (ATF) and ITF. ATF drives itself and the ITF, permanently expressing ITF to 

582 

permanently repress gene expression.  

583 

 

584 

Figure 2. Inhibitory circuits inhibit gene expression as designed. A) Signaling schematic for testing if 

585 

the inhibitory circuits operate as designed. Blue cells are programmed with an anti-orange ligand 

586 

synNotch that triggers one of the inhibitory circuits to repress blue reporter expression. B) Cell-cell 

587 

signaling test setup, where a blue cell is seeded with 3 orange neighbor cells and orange cells are deleted 

588 

at 25000 timesteps to determine how orange ligand-synNotch signaling loss affects blue reporter 

589 

repression. C) Blue reporter traces from the signaling test setup at different blue reporter repression 

590 

difficulties (

β reporter). Cells with the direct inhibition circuit lost gene repression immediately after 

591 

orange neighbor loss, consistent with the circuit’s minimal temporal control design. These results are 

592 

consistent with in vitro direct synNotch signaling dynamics 

18,31,32

. In contrast, the temporary inhibition 

593 

circuit repressed at even higher repression difficulties and maintained repression for some time despite 

594 

synNotch signaling loss. The 2-TF permanent inhibition circuit repressed at even further higher repression 

595 

difficulties and maintained permanent blue reporter repression even after signaling loss. These results 

596 

confirm that the circuits operate as designed. One trace shown per condition. Simulations run for 100000 

597 

timesteps. 

598 

 

599 

Figure 3. Temporary inhibition circuit can build a variety of multicellular structures. A) One 

600 

version of the temporary inhibition circuit, the lateral inhibition circuit 

10

. In this version, anti-CD19 

601 

synNotch drives E-cadherin (ECAD) and tet transcriptional repressor (tTS) that represses CD19 

602 

expression. B) Mixing ~100 cells programmed with this circuit results in a 2-layered structure with CD19

-

 

603 

E-cadherin

+

 green cells and CD19

+

 E-cadherin

+

 yellow cells in the center with CD19

+

 E-cadherin

-

 red 

604 

cells on the periphery. Micrograph reproduced from Toda et al, 2018 

10

 with permission from AAAS. C) 

605 

The temporary inhibition circuit is the generalized version of the lateral inhibition circuit. ECAD is E-

606 

cadherin. ITF is generic representation for tTs. BLUE-L (blue ligand) is generic representation for CD19. 

607 

D) A cell state color key is given to match expression state to cell color in the subsequent images. E) 

608 

Mixing 93 blue cells programmed with the temporary inhibition circuit results in multitudes of patterned 

609 

structures. A representative set of structures is given, showcasing the variety of patterned structures that 

610 

can form from the temporary inhibition circuit. Each structure resulted from a different parameter set of 

611 

expression difficulties for ITF/ECAD and repression difficulties for blue ligand. The full gallery of 

612 

structures, along with the parameters that generated them, is given in SFig.2A. As expected, and 

613 

previously shown, the model predicts the known in vitro structure 

19

. These results indicate that the only 

614 

known structure to date is a small subset of structures possible with this circuit. N=3 for each structure. 

615 

Simulations run for 50000 timesteps.  

616 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

14 

 

 

Figure 4. Designed inhibitory circuits can build multitudes of multicellular structures. A) The direct 

617 

inhibition circuit can also build various patterned structures. 93 blue cells with this circuit results in 7 

618 

different types of patterned structures. One representative structure for each pattern type is shown. Full 

619 

gallery of structures is given in SFig.2B. B) The 2-TF permanent inhibition circuit can also build various 

620 

patterned structures. 93 blue cells with this circuit results in 5 different types of patterned structures. One 

621 

representative structure for each pattern type is shown. Full gallery of structures is given in SFig.2C. N=3 

622 

for each structure. Simulations run for 50000 timesteps. 

623 

 

624 

Figure 5. Temporary inhibition circuit can build oscillatory structures. A) Homogenous spheroids 

625 

built by the temporary inhibition circuit had cells synchronized in expression state (color) with sharp 

626 

transition to the next expression state. An example developmental trajectory with these synchronous and 

627 

sharp transitions is shown. Cell expression state is given below each image. B) This led me to hypothesize 

628 

that the temporary inhibition circuit can build oscillatory structures. Hypothesized oscillation is shown 

629 

along with cell expression state for each phase in the oscillation. C) 57 blue cells programmed with the 

630 

temporary inhibition circuit and ECAD/ITF expression difficulty=1000 (

β ECAD/ITF=1000) with blue 

631 

ligand repression difficulty=6000 (

β BLUE-L=6000) generated morphological oscillation. Cells 

632 

synchronously transitioned from blue to cyan to red to gray before repeating the oscillation. 

633 

Developmental trajectory shown is of images at the transition time. Plot of cell percentage is given as 

634 

well. D) 57 blue cells programmed with the temporary inhibition circuit but 

β ECAD/ITF=1000 and β 

635 

BLUE-L=11000. Oscillation differed from that of C, skipping the blue and gray phase. Developmental 

636 

trajectory is shown along with plot of cell percentage. Additional oscillations with different parameters 

637 

are given in SFig.3. A representative developmental trajectory is given per oscillation. N=3 for each 

638 

oscillation. Simulations run for 100000 timesteps. 

639 

 

640 

Figure 6. Using activating amplifiers to control the temporary inhibition circuit can improve 

641 

oscillation quality. A) I recently showed that activating amplifiers can modulate temporal dynamics in 

642 

synthetic circuits 

18

. I therefore tested if prolonging repression with an activating amplifier could improve 

643 

oscillation quality. B) Temporarily amplified activation circuit controlling temporary inhibition circuit. 

644 

The temporary inhibition circuit is rewired such that the synNotch receptor now drives the activating 

645 

amplifier (activating transcription factor, ATF). The activating amplifier then drives the inhibitory circuit 

646 

that then represses target gene expression. C) Mixing 93 blue cells programmed with this circuit builds an 

647 

oscillator with improved oscillation quality compared to its non-amplified variant (SFig.5A). Mitosis was 

648 

removed due to computational limitations, but this does not affect timing or quality of oscillation 

649 

(compare Fig.5C to SFig.5A, Fig.5D to SFig.5C). Developmental trajectory is shown along with plot of 

650 

cell percentage. Additional oscillations with different parameters are given in SFig.5-7. A representative 

651 

developmental trajectory is given per oscillation. N=3 for each oscillation. Simulations run for 400000 

652 

timesteps. 

653 

 

654 

SUPPLEMENTARY FIGURES 

655 

Supplementary Figure 1. Inhibitory circuits operate as designed, related to figure 2. A) Uses the 

656 

cell-cell signaling setup of Fig.2B, but blue cells are seeded without orange neighbors to determine 

657 

background reporter repression. Reporter repression difficulties 

≥1000 do not have leaky repression (β 

658 

reporter must be at least 1000 in simulations). B) Inhibitory transcription factor (ITF) traces from the blue 

659 

reporter traces of Fig.2C. One trace shown per condition. Simulations run for 100000 timesteps. 

660 

 

661 

Supplementary Figure 2. Full gallery of multicellular structures from the inhibitory circuits, 

662 

related to figures 3 And 4. A) Full gallery of the structures built by the temporary inhibition circuit with 

663 

parameters specified. Number labels correspond to structures shown in Fig.3E. Pink box encloses 

664 

structures tested for oscillation later in the study. B) Full gallery of the structures built by the direct 

665 

inhibition circuit with parameters specified. Number labels correspond to structures shown in Fig.4A. C) 

666 

Full gallery of the structures built by the 2-TF permanent inhibition circuit with parameters specified. 

667 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

15 

 

 

Number labels correspond to structures shown in Fig.4B. Initial mixture is 93 blue cells. One 

668 

representative structure for each parameter combination is shown. N=3 for each structure. Simulations run 

669 

for 50000 timesteps. 

670 

 

671 

Supplementary Figure 3. Additional oscillatory structures built by the temporary inhibition circuit, 

672 

related to figure 5. A) Oscillator resulting from 57 blue cells programmed with the temporary inhibition 

673 

circuit and ECAD/ITF expression difficulty=1000 (

β ECAD/ITF=1000) with blue ligand repression 

674 

difficulty=16000 (

β BLUE-L=16000). Plot of cell percentage is given on the right. B) Same as A but with 

675 

blue ligand repression difficulty=21000 (

β BLUE-L=21000). C) 93 blue cells programmed with the 

676 

temporary inhibition circuit and ECAD/ITF expression difficulty=1000 (

β ECAD/ITF=1000) with blue 

677 

ligand repression difficulty=1000 (

β BLUE-L=1000) yielded poor oscillation. Mitosis was removed so 

678 

the simulation could be run longer while limiting computational strain. Mitosis does not affect oscillation 

679 

behavior. See Methods Section for validation. A representative developmental trajectory with images at 

680 

the transition time is given per oscillation. N=3 for each oscillation. Simulations run for timesteps shown. 

681 

 

682 

Supplementary Figure 4. Direct inhibition circuit and 2-TF permanent inhibition circuit do not 

683 

build oscillatory structures, related to figure 5. A) 93 blue cells programmed with the direct inhibition 

684 

circuit were run with the same parameter combinations tested for oscillation in the temporary inhibition 

685 

circuit of Fig.5 and SFig.3. There were no oscillations. B) Same as A but with the 2-TF permanent 

686 

inhibition circuit. Mitosis was removed so the simulation could be run for 200000 timesteps. Plots of cell 

687 

percentage is given. N=3. 

688 

 

689 

Supplementary Figure 5. Comparing oscillatory structures built by the amplified oscillator to the 

690 

oscillator (temporary inhibition circuit) with 

β ECAD/ITF=1000, related to figure 6. A) Oscillator 

691 

resulting from 93 blue cells programmed with the temporary inhibition circuit (oscillator) and ECAD/ITF 

692 

expression difficulty=1000 (

β ECAD/ITF=1000) with blue ligand repression difficulty=6000 (β BLUE-

693 

L=6000). Plot of cell percentage is given on the right. Oscillation is to be compared to oscillation of 

694 

Fig.6C. B) Oscillator resulting from 93 blue cells programmed with an activating amplifier controlling the 

695 

temporary inhibition circuit. ECAD/ITF expression difficulty=1000 (

β ECAD/ITF=1000) with blue 

696 

ligand repression difficulty=11000 (

β BLUE-L=11000). Plot of cell percentage is given on the right. 

697 

Oscillation is to be compared to oscillation of SFig.5C (below). C) Oscillator resulting from 93 blue cells 

698 

programmed with the temporary inhibition circuit (oscillator) and ECAD/ITF expression difficulty=1000 

699 

(

β ECAD/ITF=1000) with blue ligand repression difficulty=11000 (β BLUE-L=11000). Plot of cell 

700 

percentage is given on the right. Oscillation is to be compared to oscillation of SFig.5B. Mitosis was 

701 

removed in all simulations shown here. A representative developmental trajectory with images at the 

702 

transition time is given per oscillation. N=3 for each oscillation. Simulations run for timesteps shown. 

703 

 

704 

Supplementary Figure 6. Comparing oscillatory structures built by the amplified oscillator to the 

705 

oscillator (temporary inhibition circuit) with 

β ECAD/ITF=6000, β BLUE-L=1000, related to figure 

706 

6. A) Oscillator resulting from 93 blue cells programmed with the temporary inhibition circuit (oscillator) 

707 

at given parameters. Oscillation is to be compared to oscillation of SFig.6B. B) Oscillator resulting from 

708 

93 blue cells programmed with an activating amplifier controlling the temporary inhibition circuit at 

709 

given parameters. Oscillation is to be compared to oscillation of SFig.6A. Mitosis was removed in all 

710 

simulations shown here. A representative developmental trajectory with images at the transition time is 

711 

given per oscillation. N=3 for each oscillation. Simulations run for timesteps shown.  

712 

 

713 

Supplementary Figure 7. Comparing oscillatory structures built by the amplified oscillator to the 

714 

oscillator (temporary inhibition circuit) with 

β ECAD/ITF=6000, β BLUE-L=6000, related to figure 

715 

6. A) Oscillator resulting from 93 blue cells programmed with the temporary inhibition circuit (oscillator) 

716 

at given parameters. Oscillation is to be compared to oscillation of SFig.7B. B) Oscillator resulting from 

717 

93 blue cells programmed with an activating amplifier controlling the temporary inhibition circuit at 

718 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

16 

 

 

given parameters. Oscillation is to be compared to oscillation of SFig.7A. Mitosis was removed in all 

719 

simulations shown here. A representative developmental trajectory with images at the transition time is 

720 

given per oscillation. N=3 for each oscillation. Simulations run for timesteps shown. 

721 

 

722 

REFERENCES 

723 

 

724 

(1) 

Cohen, R.; Taiber, S.; Loza, O.; Kasirer, S.; Woland, S.; Sprinzak, D. Precise Alternating Cellular 

725 

Pattern in the Inner Ear by Coordinated Hopping Intercalations and Delaminations. Sci Adv 2023, 

726 

9 (8), eadd2157. https://doi.org/10.1126/sciadv.add2157.

 

727 

(2) 

Sprinzak, D.; Lakhanpal, A.; LeBon, L.; Garcia-Ojalvo, J.; Elowitz, M. B. Mutual Inactivation of 

728 

Notch Receptors and Ligands Facilitates Developmental Patterning. PLoS Comput Biol 2011, 7 (6), 

729 

e1002069. 

730 

(3) 

Sprinzak, D.; Lakhanpal, A.; LeBon, L.; Santat, L. A.; Fontes, M. E.; Anderson, G. A.; Garcia-Ojalvo, 

731 

J.; Elowitz, M. B. Cis-Interactions between Notch and Delta Generate Mutually Exclusive 

732 

Signalling States. Nature 2010, 465 (7294), 86–90. https://doi.org/10.1038/nature08959. 

733 

(4) 

Shaya, O.; Binshtok, U.; Hersch, M.; Rivkin, D.; Weinreb, S.; Amir-Zilberstein, L.; Khamaisi, B.; 

734 

Oppenheim, O.; Desai, R. A.; Goodyear, R. J.; Richardson, G. P.; Chen, C. S.; Sprinzak, D. Cell-Cell 

735 

Contact Area Affects Notch Signaling and Notch-Dependent Patterning. Dev Cell 2017, 40 (5), 

736 

505-511.e6. https://doi.org/10.1016/j.devcel.2017.02.009. 

737 

(5) 

Miao, Y.; Djeffal, Y.; De Simone, A.; Zhu, K.; Lee, J. G.; Lu, Z.; Silberfeld, A.; Rao, J.; Tarazona, O. A.; 

738 

Mongera, A.; Rigoni, P.; Diaz-Cuadros, M.; Song, L. M. S.; Di Talia, S.; Pourquié, O. Reconstruction 

739 

and Deconstruction of Human Somitogenesis in Vitro. Nature 2022. 

740 

https://doi.org/10.1038/s41586-022-05655-4. 

741 

(6) 

Goldbeter, A.; Pourquié, O. Modeling the Segmentation Clock as a Network of Coupled 

742 

Oscillations in the Notch, Wnt and FGF Signaling Pathways. J Theor Biol 2008, 252 (3), 574–585. 

743 

https://doi.org/https://doi.org/10.1016/j.jtbi.2008.01.006. 

744 

(7) 

Palmer, M. A.; Nerger, B. A.; Goodwin, K.; Sudhakar, A.; Lemke, S. B.; Ravindran, P. T.; Toettcher, 

745 

J. E.; Košmrlj, A.; Nelson, C. M. Stress Ball Morphogenesis: How the Lizard Builds Its Lung. Sci Adv 

746 

2023, 7 (52), eabk0161. https://doi.org/10.1126/sciadv.abk0161. 

747 

(8) 

Steinberg, M. S. Reconstruction of Tissues by Dissociated Cells. Science (1979) 1963, 141 (3579), 

748 

401–408. 

749 

(9) 

Foty, R. A.; Steinberg, M. S. The Differential Adhesion Hypothesis: A Direct Evaluation. Dev Biol 

750 

2005, 278 (1), 255–263. https://doi.org/https://doi.org/10.1016/j.ydbio.2004.11.012. 

751 

(10)  Toda, S.; Blauch, L. R.; Tang, S. K. Y.; Morsut, L.; Lim, W. A. Programming Self-Organizing 

752 

Multicellular Structures with Synthetic Cell-Cell Signaling. Science (1979) 2018, 361 (6398), 156–

753 

162. https://doi.org/10.1126/science.aat0271. 

754 

(11)  Toda, S.; McKeithan, W. L.; Hakkinen, T. J.; Lopez, P.; Klein, O. D.; Lim, W. A. Engineering 

755 

Synthetic Morphogen Systems That Can Program Multicellular Patterning. Science (1979) 2020, 

756 

370 (6514), 327–331. https://doi.org/10.1126/science.abc0033. 

757 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

17 

 

 

(12)  Lam, C.; Li, Y.; Landgraf, T.; Nieh, J. Dancing Attraction: Followers of Honey Bee Tremble and 

758 

Waggle Dances Exhibit Similar Behaviors. Biol Open 2017, 6 (6). 

759 

https://doi.org/10.1242/bio.025445. 

760 

(13)  Schlissel, G.; Li, P. Synthetic Developmental Biology: Understanding Through Reconstitution. 

761 

Annu Rev Cell Dev Biol 2020, 36 (1), 339–357. https://doi.org/10.1146/annurev-cellbio-020620-

762 

090650. 

763 

(14)  Li, P.; Markson, J. S.; Wang, S.; Chen, S.; Vachharajani, V.; Elowitz, M. B. Morphogen Gradient 

764 

Reconstitution Reveals Hedgehog Pathway Design Principles. Science (1979) 2018, 360 (6388), 

765 

543–548. https://doi.org/10.1126/science.aao0645. 

766 

(15)  McNamara, H. M.; Ramm, B.; Toettcher, J. E. Synthetic Developmental Biology: New Tools to 

767 

Deconstruct and Rebuild Developmental Systems. Semin Cell Dev Biol 2023, 141, 33–42. 

768 

https://doi.org/https://doi.org/10.1016/j.semcdb.2022.04.013. 

769 

(16)  Ho, C.; Morsut, L. Novel Synthetic Biology Approaches for Developmental Systems. Stem Cell 

770 

Reports 2021, 16 (5), 1051–1064. https://doi.org/https://doi.org/10.1016/j.stemcr.2021.04.007. 

771 

(17)  Toda, S.; Frankel, N. W.; Lim, W. A. Engineering Cell–Cell Communication Networks: Programming 

772 

Multicellular Behaviors. Curr Opin Chem Biol 2019, 52, 31–38. 

773 

https://doi.org/https://doi.org/10.1016/j.cbpa.2019.04.020. 

774 

(18)  Lam, C. Design and Mathematical Analysis of Activating Transcriptional Amplifiers That Enable 

775 

Modular Temporal Control in Synthetic Juxtacrine Circuits. Synth Syst Biotechnol 2023, 8 (4), 654–

776 

672. https://doi.org/https://doi.org/10.1016/j.synbio.2023.09.008. 

777 

(19)  Lam, C.; Saluja, S.; Courcoubetis, G.; Yu, D.; Chung, C.; Courte, J.; Morsut, L. Parameterized 

778 

Computational Framework for the Description and Design of Genetic Circuits of Morphogenesis 

779 

Based on Contact-Dependent Signaling and Changes in Cell–Cell Adhesion. ACS Synth Biol 2022, 

780 

11 (4), 1417–1439. https://doi.org/10.1021/acssynbio.0c00369. 

781 

(20)  Santorelli, M.; Lam, C.; Morsut, L. Synthetic Development: Building Mammalian Multicellular 

782 

Structures with Artificial Genetic Programs. Curr Opin Biotechnol 2019, 59, 130–140. 

783 

https://doi.org/https://doi.org/10.1016/j.copbio.2019.03.016. 

784 

(21)  Johnson, M. B.; March, A. R.; Morsut, L. Engineering Multicellular Systems: Using Synthetic 

785 

Biology to Control Tissue Self-Organization. Curr Opin Biomed Eng 2017, 4, 163–173. 

786 

https://doi.org/https://doi.org/10.1016/j.cobme.2017.10.008. 

787 

(22)  Mukherji, S.; van Oudenaarden, A. Synthetic Biology: Understanding Biological Design from 

788 

Synthetic Circuits. Nat Rev Genet 2009, 10 (12), 859–871. https://doi.org/10.1038/nrg2697. 

789 

(23)  Zarkesh, I.; Kazemi Ashtiani, M.; Shiri, Z.; Aran, S.; Braun, T.; Baharvand, H. Synthetic 

790 

Developmental Biology: Engineering Approaches to Guide Multicellular Organization. Stem Cell 

791 

Reports 2022, 17 (4), 715–733. https://doi.org/https://doi.org/10.1016/j.stemcr.2022.02.004. 

792 

(24)  Lee, J. C.; Walton, B. L.; Hamann, C. A.; Brunger, J. M. Synthetic Regulation of Multicellular 

793 

Systems for Regenerative Engineering. Curr Opin Biomed Eng 2020, 16, 42–51. 

794 

https://doi.org/https://doi.org/10.1016/j.cobme.2020.100252. 

795 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

18 

 

 

(25)  Kim, H.; Jin, X.; Glass, D. S.; Riedel-Kruse, I. H. Engineering and Modeling of Multicellular 

796 

Morphologies and Patterns. Curr Opin Genet Dev 2020, 63, 95–102. 

797 

https://doi.org/https://doi.org/10.1016/j.gde.2020.05.039. 

798 

(26)  Lim, W. A. The Emerging Era of Cell Engineering: Harnessing the Modularity of Cells to Program 

799 

Complex Biological Function. Science (1979) 2022, 378 (6622), 848–852. 

800 

https://doi.org/10.1126/science.add9665. 

801 

(27)  Martínez-Ara, G.; Stapornwongkul, K. S.; Ebisuya, M. Scaling up Complexity in Synthetic 

802 

Developmental Biology. Science (1979) 2022, 378 (6622), 864–868. 

803 

https://doi.org/10.1126/science.add9666. 

804 

(28)  Trentesaux, C.; Yamada, T.; Klein, O. D.; Lim, W. A. Harnessing Synthetic Biology to Engineer 

805 

Organoids and Tissues. Cell Stem Cell 2023, 30 (1), 10–19. 

806 

https://doi.org/10.1016/j.stem.2022.12.013. 

807 

(29)  Elowitz, M.; Lim, W. A. Build Life to Understand It. Nature 2010, 468 (7326), 889–890. 

808 

https://doi.org/10.1038/468889a. 

809 

(30)  Zhu, R.; Santat, L. A.; Markson, J. S.; Nandagopal, N.; Gregrowicz, J.; Elowitz, M. B. Reconstitution 

810 

of Morphogen Shuttling Circuits. Sci Adv 2023, 9 (28), eadf9336. 

811 

https://doi.org/10.1126/sciadv.adf9336. 

812 

(31)  Morsut, L.; Roybal, K. T.; Xiong, X.; Gordley, R. M.; Coyle, S. M.; Thomson, M.; Lim, W. A. 

813 

Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. 

814 

Cell 2016, 164 (4), 780–791. https://doi.org/10.1016/j.cell.2016.01.012. 

815 

(32)  Roybal, K. T.; Rupp, L. J.; Morsut, L.; Walker, W. J.; McNally, K. A.; Park, J. S.; Lim, W. A. Precision 

816 

Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell 2016, 164 (4), 

817 

770–779. https://doi.org/10.1016/j.cell.2016.01.011. 

818 

(33)  Izaguirre, J. A.; Chaturvedi, R.; Huang, C.; Cickovski, T.; Coffland, J.; Thomas, G.; Forgacs, G.; Alber, 

819 

M.; Hentschel, G.; Newman, S. A.; Glazier, J. A. CompuCell, a Multi-Model Framework for 

820 

Simulation of Morphogenesis. Bioinformatics 2004, 20 (7), 1129–1137. 

821 

(34)  Swat, M. H.; Thomas, G. L.; Belmonte, J. M.; Shirinifard, A.; Hmeljak, D.; Glazier, J. A. Chapter 13 - 

822 

Multi-Scale Modeling of Tissues Using CompuCell3D. In Methods in Cell Biology; Asthagiri, A. R., 

823 

Arkin, A. P., Eds.; Academic Press, 2012; Vol. 110, pp 325–366. 

824 

https://doi.org/https://doi.org/10.1016/B978-0-12-388403-9.00013-8. 

825 

(35)  Hester, S. D.; Belmonte, J. M.; Gens, J. S.; Clendenon, S. G.; Glazier, J. A. A Multi-Cell, Multi-Scale 

826 

Model of Vertebrate Segmentation and Somite Formation. PLoS Comput Biol 2011, 7 (10), 

827 

e1002155-. 

828 

(36)  Burrill, D. R.; Inniss, M. C.; Boyle, P. M.; Silver, P. A. Synthetic Memory Circuits for Tracking 

829 

Human Cell Fate. Genes Dev 2012, 26 (13), 1486–1497. https://doi.org/10.1101/gad.189035.112. 

830 

(37)  Ajo-Franklin, C. M.; Drubin, D. A.; Eskin, J. A.; Gee, E. P. S.; Landgraf, D.; Phillips, I.; Silver, P. A. 

831 

Rational Design of Memory in Eukaryotic Cells. Genes Dev 2007, 21 (18), 2271–2276. 

832 

https://doi.org/10.1101/gad.1586107. 

833 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

19 

 

 

(38)  Zhou, J.; Ge, Q.; Wang, D.; Guo, Q.; Tao, Y. Engineering a Modular Double-Transmembrane 

834 

Synthetic Receptor System for Customizing Cellular Programs. Cell Rep 2023, 42 (4). 

835 

https://doi.org/10.1016/j.celrep.2023.112385. 

836 

(39)  Saga, Y. The Mechanism of Somite Formation in Mice. Curr Opin Genet Dev 2012, 22 (4), 331–

837 

338. https://doi.org/https://doi.org/10.1016/j.gde.2012.05.004. 

838 

(40)  Lewis, J. Autoinhibition with Transcriptional Delay: A Simple Mechanism for the Zebrafish 

839 

Somitogenesis Oscillator. Current Biology 2003, 13 (16), 1398–1408. 

840 

https://doi.org/10.1016/S0960-9822(03)00534-7. 

841 

(41)  Elowitz, M. B.; Leibler, S. A Synthetic Oscillatory Network of Transcriptional Regulators. Nature 

842 

2000, 403 (6767), 335–338. https://doi.org/10.1038/35002125. 

843 

(42)  Santorelli, M.; Perna, D.; Isomura, A.; Garzilli, I.; Annunziata, F.; Postiglione, L.; Tumaini, B.; 

844 

Kageyama, R.; di Bernardo, D. Reconstitution of an Ultradian Oscillator in Mammalian Cells by a 

845 

Synthetic Biology Approach. ACS Synth Biol 2018, 7 (5), 1447–1455. 

846 

https://doi.org/10.1021/acssynbio.8b00083. 

847 

(43)  Tigges, M.; Marquez-Lago, T. T.; Stelling, J.; Fussenegger, M. A Tunable Synthetic Mammalian 

848 

Oscillator. Nature 2009, 457 (7227), 309–312. https://doi.org/10.1038/nature07616. 

849 

(44)  Startin, W. J.; Beilby, M. A.; Saulson, P. R. Mechanical Quality Factors of Fused Silica Resonators. 

850 

Review of Scientific Instruments 1998, 69 (10), 3681–3689. https://doi.org/10.1063/1.1149159. 

851 

(45)  Gu, F.; Jiang, W.; Kang, F.; Su, T.; Yang, X.; Qi, Q.; Liang, Q. A Synthetic Population-Level Oscillator 

852 

in Non-Microfluidic Environments. Commun Biol 2023, 6 (1), 515. 

853 

https://doi.org/10.1038/s42003-023-04904-0. 

854 

(46)  Zhou, Z.; Liu, Y.; Feng, Y.; Klepin, S.; Tsimring, L. S.; Pillus, L.; Hasty, J.; Hao, N. Engineering 

855 

Longevity—Design of a Synthetic Gene Oscillator to Slow Cellular Aging. Science (1979) 2023, 380 

856 

(6643), 376–381. https://doi.org/10.1126/science.add7631. 

857 

(47)  Chen, W. C. W.; Gaidukov, L.; Lai, Y.; Wu, M.-R.; Cao, J.; Gutbrod, M. J.; Choi, G. C. G.; Utomo, R. 

858 

P.; Chen, Y.-C.; Wroblewska, L.; Kellis, M.; Zhang, L.; Weiss, R.; Lu, T. K. A Synthetic Transcription 

859 

Platform for Programmable Gene Expression in Mammalian Cells. Nat Commun 2022, 13 (1), 

860 

6167. https://doi.org/10.1038/s41467-022-33287-9. 

861 

(48)  Li, H.-S.; Israni, D. V; Gagnon, K. A.; Gan, K. A.; Raymond, M. H.; Sander, J. D.; Roybal, K. T.; Joung, 

862 

J. K.; Wong, W. W.; Khalil, A. S. Multidimensional Control of Therapeutic Human Cell Function 

863 

with Synthetic Gene Circuits. Science (1979) 2022, 378 (6625), 1227–1234. 

864 

https://doi.org/10.1126/science.ade0156. 

865 

(49)  Krawczyk, K.; Scheller, L.; Kim, H.; Fussenegger, M. Rewiring of Endogenous Signaling Pathways to 

866 

Genomic Targets for Therapeutic Cell Reprogramming. Nat Commun 2020, 11 (1), 608. 

867 

https://doi.org/10.1038/s41467-020-14397-8. 

868 

(50)  Liu, H.; Baeumler, T. A.; Nakamura, K.; Okada, Y.; Cho, S.; Eguchi, A.; Kuroda, D.; Tsumoto, K.; 

869 

Ueki, R.; Sando, S. An Engineered Synthetic Receptor–Aptamer Pair for an Artificial Signal 

870 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

20 

 

 

Transduction System. ACS Nano 2023, 17 (10), 9039–9048. 

871 

https://doi.org/10.1021/acsnano.2c11744. 

872 

(51)  Huang, J.; Xue, S.; Buchmann, P.; Teixeira, A. P.; Fussenegger, M. An Electrogenetic Interface to 

873 

Program Mammalian Gene Expression by Direct Current. Nat Metab 2023, 5 (8), 1395–1407. 

874 

https://doi.org/10.1038/s42255-023-00850-7. 

875 

(52)  Sloas, D. C.; Tran, J. C.; Marzilli, A. M.; Ngo, J. T. Tension-Tuned SynNotch Receptors for Synthetic 

876 

Mechanotranduction and Intercellular Force Detection. bioRxiv 2022, 2022.05.01.490205. 

877 

https://doi.org/10.1101/2022.05.01.490205. 

878 

(53)  Conklin, B. R.; Hsiao, E. C.; Claeysen, S.; Dumuis, A.; Srinivasan, S.; Forsayeth, J. R.; Guettier, J.-M.; 

879 

Chang, W. C.; Pei, Y.; McCarthy, K. D.; Nissenson, R. A.; Wess, J.; Bockaert, J.; Roth, B. L. 

880 

Engineering GPCR Signaling Pathways with RASSLs. Nat Methods 2008, 5 (8), 673–678. 

881 

https://doi.org/10.1038/nmeth.1232. 

882 

(54)  Hartfield, R. M.; Schwarz, K. A.; Muldoon, J. J.; Bagheri, N.; Leonard, J. N. Multiplexing Engineered 

883 

Receptors for Multiparametric Evaluation of Environmental Ligands. ACS Synth Biol 2017, 6 (11), 

884 

2042–2055. https://doi.org/10.1021/acssynbio.6b00279. 

885 

(55)  Edelstein, H. I.; Donahue, P. S.; Muldoon, J. J.; Kang, A. K.; Dolberg, T. B.; Battaglia, L. M.; Allchin, 

886 

E. R.; Hong, M.; Leonard, J. N. Elucidation and Refinement of Synthetic Receptor Mechanisms. 

887 

Synth Biol 2020, 5 (1), ysaa017. https://doi.org/10.1093/synbio/ysaa017. 

888 

(56)  Schwarz, K. A.; Daringer, N. M.; Dolberg, T. B.; Leonard, J. N. Rewiring Human Cellular Input–

889 

Output Using Modular Extracellular Sensors. Nat Chem Biol 2017, 13 (2), 202–209. 

890 

https://doi.org/10.1038/nchembio.2253. 

891 

(57)  Daringer, N. M.; Dudek, R. M.; Schwarz, K. A.; Leonard, J. N. Modular Extracellular Sensor 

892 

Architecture for Engineering Mammalian Cell-Based Devices. ACS Synth Biol 2014, 3 (12), 892–

893 

902. https://doi.org/10.1021/sb400128g. 

894 

(58)  Scheller, L.; Strittmatter, T.; Fuchs, D.; Bojar, D.; Fussenegger, M. Generalized Extracellular 

895 

Molecule Sensor Platform for Programming Cellular Behavior. Nat Chem Biol 2018, 14 (7), 723–

896 

729. https://doi.org/10.1038/s41589-018-0046-z. 

897 

(59)  Kipniss, N. H.; Dingal, P. C. D. P.; Abbott, T. R.; Gao, Y.; Wang, H.; Dominguez, A. A.; Labanieh, L.; 

898 

Qi, L. S. Engineering Cell Sensing and Responses Using a GPCR-Coupled CRISPR-Cas System. Nat 

899 

Commun 2017, 8 (1), 2212. https://doi.org/10.1038/s41467-017-02075-1. 

900 

(60)  Barnea, G.; Strapps, W.; Herrada, G.; Berman, Y.; Ong, J.; Kloss, B.; Axel, R.; Lee, K. J. The Genetic 

901 

Design of Signaling Cascades to Record Receptor Activation. Proceedings of the National 

902 

Academy of Sciences 2008, 105 (1), 64–69. https://doi.org/10.1073/pnas.0710487105. 

903 

(61)  Yang, Z.; Yu, Z.; Cai, Y.; Du, R.; Cai, L. Engineering of an Enhanced Synthetic Notch Receptor by 

904 

Reducing Ligand-Independent Activation. Commun Biol 2020, 3 (1), 116. 

905 

https://doi.org/10.1038/s42003-020-0848-x. 

906 

(62)  Zhu, I.; Liu, R.; Garcia, J. M.; Hyrenius-Wittsten, A.; Piraner, D. I.; Alavi, J.; Israni, D. V; Liu, B.; 

907 

Khalil, A. S.; Roybal, K. T. Modular Design of Synthetic Receptors for Programmed Gene 

908 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

21 

 

 

Regulation in Cell Therapies. Cell 2022, 185 (8), 1431-1443.e16. 

909 

https://doi.org/10.1016/j.cell.2022.03.023. 

910 

(63)  Williams, J. Z.; Allen, G. M.; Shah, D.; Sterin, I. S.; Kim, K. H.; Garcia, V. P.; Shavey, G. E.; Yu, W.; 

911 

Puig-Saus, C.; Tsoi, J.; Ribas, A.; Roybal, K. T.; Lim, W. A. Precise T Cell Recognition Programs 

912 

Designed by Transcriptionally Linking Multiple Receptors. Science (1979) 2020, 370 (6520), 1099–

913 

1104. https://doi.org/10.1126/science.abc6270. 

914 

(64)  Lam, C. K.; Hyde, R. K.; Patel, S. A. Synthetic Immunotherapy: Programming Immune Cells with 

915 

Novel and Sophisticated Logic Capabilities. Transplant Cell Ther 2022, 28 (9), 560–571. 

916 

https://doi.org/https://doi.org/10.1016/j.jtct.2022.06.001. 

917 

(65)  Roybal, K. T.; Williams, J. Z.; Morsut, L.; Rupp, L. J.; Kolinko, I.; Choe, J. H.; Walker, W. J.; McNally, 

918 

K. A.; Lim, W. A. Engineering T Cells with Customized Therapeutic Response Programs Using 

919 

Synthetic Notch Receptors. Cell 2016, 167 (2), 419-432.e16. 

920 

https://doi.org/10.1016/j.cell.2016.09.011. 

921 

(66)  Baeumler, T. A.; Ahmed, A. A.; Fulga, T. A. Engineering Synthetic Signaling Pathways with 

922 

Programmable DCas9-Based Chimeric Receptors. Cell Rep 2017, 20 (11), 2639–2653. 

923 

https://doi.org/10.1016/j.celrep.2017.08.044. 

924 

(67)  Scully, K. M.; Jacobson, E. M.; Jepsen, K.; Lunyak, V.; Viadiu, H.; Carrière, C.; Rose, D. W.; 

925 

Hooshmand, F.; Aggarwal, A. K.; Rosenfeld, M. G. Allosteric Effects of Pit-1 DNA Sites on Long-

926 

Term Repression in Cell Type Specification. Science (1979) 2000, 290 (5494), 1127–1131. 

927 

https://doi.org/10.1126/science.290.5494.1127. 

928 

(68)  Willy, P. J.; Kobayashi, R.; Kadonaga, J. T. A Basal Transcription Factor That Activates or Represses 

929 

Transcription. Science (1979) 2000, 290 (5493), 982–984. 

930 

https://doi.org/10.1126/science.290.5493.982. 

931 

(69)  Latchman, D. S. Transcription Factors: Bound to Activate or Repress. Trends Biochem Sci 2001, 26 

932 

(4), 211–213. https://doi.org/https://doi.org/10.1016/S0968-0004(01)01812-6. 

933 

(70)  Boyle, P.; Després, C. Dual-Function Transcription Factors and Their Entourage. Plant Signal 

934 

Behav 2010, 5 (6), 629–634. https://doi.org/10.4161/psb.5.6.11570. 

935 

(71)  Reeve, R.; Turner, J. R. Pharmacodynamic Models: Parameterizing the Hill Equation, Michaelis-

936 

Menten, the Logistic Curve, and Relationships Among These Models. J Biopharm Stat 2013, 23 

937 

(3), 648–661. https://doi.org/10.1080/10543406.2012.756496. 

938 

(72)  Barlow, R.; Blake, J. F. Hill Coefficients and the Logistic Equation. Trends Pharmacol Sci 1989, 10 

939 

(11), 440–441. https://doi.org/10.1016/S0165-6147(89)80006-9. 

940 

  

941 

 

942 

 

943 

 

944 

 

945 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Graphical Abstract

Target Gene

Inhibitory

Circuit

Variety of Multicellular Structures 

Different Morphological Oscillators 

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Figure 1

Designed Synthetic Inhibitory Circuits

2-Transcription Factor 

(2-TF) Permanent

Inhibition

F)

ATF

Target Gene

ITF

Temporary

Inhibition

E)

Target Gene

ITF

Direct Inhibition

D)

Target Gene

Extracellular Ligand 

Binding Domain

Intracellular

Activating Transcription Factor

Or

Inhibitory Transcription Factor

Regulating Gene of Choice

Synthetic Notch (synNotch) Receptor

C)

B)

Build-it-to-understand-it

Inhibitory Circuit

Patterned

Multicellular

Structures Obtainable?

Target Gene

A)

Build-it-to-understand-it

Activatory Circuit

Diverse Variety of Patterned 

Multicellular Structures

Synthetic

Receptor

Cognate

Ligand

Target Gene

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Figure 2

B)

Cell-Cell

Signaling

Setup

Delete Orange Senders

at 25000 Timesteps

3

Neighboring

Orange 

Senders

Quantify Reporter 

and ITF Levels

C)

Reporter Levels at Different Reporter Repression Difficulties

Reporter (10

3

)

Timestep (10

3

)

Direct

Temporary

2-TF Permanent

3000

6000

12000

18000

25000

1000

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

β Reporter

A)

Signaling Schematic

Direct Inhibition

Temporary

Inhibition

2-TF Permanent

Inhibition

Blue Reporter

Blue Reporter

ITF

Blue Reporter

ATF

ITF

Anti-orange

ligand

synNotch

Orange

ligand

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Figure 3

A)

Lateral Inhibition Circuit

B)

Only Known Resulting Structure

Ligand+

E-cadherin-

Cells

Ligand-

E-cadherin+

Cells

Ligand+

E-cadherin+

Cells

Image reproduced from Toda et al, 2018

with permission from AAAS.

ECAD

tTS

CD19

CD19

E-cadherin

CD19

Anti-CD19

synNotch

ECAD

tTS

C)

Temporary Inhibition Circuit

t=50

5

Ligand+

E-cadherin-

Cells

Ligand-

E-cadherin+

Cells

Ligand+

E-cadherin+

Cells

1

2

3

4

t=50

t=50

t=50

t=50

6

7

t=50

t=50

E)

Various Resulting Structures of the Temporary Inhibition Circuit

ECAD

ITF

BLUE-L

E-cadherin

Blue

ligand

Anti-(Blue ligand)

synNotch

ECAD

ITF

BLUE-L

D)

Cell State Color key

Ecad/ITF+

Blue ligand-

Ecad/ITF-

Blue ligand+

Ecad/ITF+

Blue ligand+

Ecad/ITF-

Blue ligand-

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Figure 4

t=50

t=50

t=50

1

2

3

t=50

t=50

4

5

A)

Direct Inhibition Circuit and Various Resulting Structures

B)

2-TF Permanent Inhibition Circuit and Various Resulting Structures

t=50

t=50

1

2

t=50

3

t=50

4

t=50

5

t=50

6

t=50

7

ECAD

BLUE-L

ECAD

BLUE-L

E-cadherin

Blue

ligand

Anti-(Blue ligand)

synNotch

ECAD

ITF

ATF

ITF

ATF

BLUE-L

BLUE-L

E-cadherin

Blue

ligand

Anti-(Blue ligand)

synNotch

ECAD

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Figure 5

C)

Oscillator with 

β ECAD/ITF

=1000, 

β BLUE-L=6000

 

Cell Percentage

Timesteps (10

mcs)

20 40 60 80 100

20

40

60

80

100

Timesteps (10

3

)

74.5 77.5

80

85.5

92

94

100

60

0

8.5

39

65

D)

Oscillator with 

β ECAD/ITF

=1000, 

β 

BLUE-L=11000 

Timesteps (10

mcs)

20 40 60 80 100

Cell Percentage

20

40

60

80

100

Timesteps (10

3

) 0

8.5 46.5

67

76

84.5 89.5

100

60

A)

Development of

Homogenous Spheroid

from

Temporary Inhibtion Circuit

t=39.5

E-cadherin+

blue ligand-

Red Cells

t=0

E-cadherin-

blue ligand+

Blue Cells

t=8.5

E-cadherin+

blue ligand+

Cyan Cells

B)

Hypothesized Oscillation

E-cadherin+

blue ligand-

Red Cells

E-cadherin-

blue ligand+

Blue Cells

E-cadherin+

blue ligand+

Cyan Cells

E-cadherin-

blue ligand-

Gray Cells

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Figure 6

A)

Controlling Inhibitory Circuits with Activating Amplifiers

Step 1

Step 2

Step 3

Amplifier

Target Gene

B)

Temporarily Amplified Activation Circuit Controlling

Temporary Inhibition Circuit

C)

Amplified Oscillator with 

β ECAD/ITF

=1000, 

β BLUE-L=6000

 

90

Timesteps (10

3

)

158 162.5 168 250.5

262.5 266.5 272 354.5

366

370 375.5 400

0

9.5

40 146.5

Cell Percentage

Timesteps (10

mcs)

100 200 300 400

20

40

60

80

100

Inhibitory

Circuit

E-cadherin

Blue

ligand

Anti-(Blue ligand) 

synNotch

ECAD

ITF

BLUE-L

ATF

ECAD

ITF

BLUE-L

ATF

ECAD

ITF

ATF

BLUE-L

Activating

Amplifier

Inhibitory

Circuit

Target

Gene

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Supplementary Figure 1

A)

Determining Background Reporter Repression

Quantify Reporter

Levels Over

Experiment

+

0

Orange 

Senders

Cell-Cell

Signaling

Setup

β Reporter

0 25 50 75 100

15

25

0 25 50 75 100

15

25

0 25 50 75 100

15

25

0 25 50 75 100

15

25

0 25 50 75 100

15

25

0 25 50 75 100

15

25

0

1000

Direct

Temporarily

Amplified

2-TF Permanently

Amplified

Level (10

3

)

Timestep (10

3

)

ITF

Reporter

B)

ITF Levels at the Tested Reporter Repression Difficulties

β Reporter

Direct

Temporary

2-TF Permanent

3000

1000

6000

12000

18000

25000

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

ITF Levels (10

3

)

Timestep (10

3

)

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

25 50 75 100

15

25

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Supplementary Figure 2

A)

Temporary Inhibition

ECAD/ITF Expression Difficulty, β ECAD/ITF (10

3

)

Blue Ligand Repression Difficulty (10

 3

)

1

1

6

11

16

21

6

11

16

21

1

6

7

2

3

4

5

* *

*

B)

Direct Inhibition

ECAD/ITF Expression Difficulty, β ECAD/ITF (10

3

)

1

1

6

11

16

21

6

11

16

21

1

2

3

4

6

5

7

Blue Ligand Repression Difficulty (10

 3

)

C)

2-TF Permanent Inhibition

ECAD/ITF Expression Difficulty, β ECAD/ITF (10

3

)

Blue Ligand Repression Difficulty (10

 3

)

1

1

6

11

16

21

6

11

16

21

1

2

3

4

5

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Supplementary Figure 3

A)

Oscillator with 

β ECAD/ITF

=1000, 

β 

BLUE-L=16000 

Timesteps (10

mcs)

20 40 60 80 100

Cell Percentage

20

40

60

80

100

Timesteps (10

3

)

81

86

93

100

60

0

8.5

57.5

69

B)

Oscillator with 

β ECAD/ITF

=1000, 

β 

BLUE-L=21000 

Timesteps (10

mcs)

20 40 60 80 100

Cell Percentage

20

40

60

80

100

82.5

97.5

100

Timesteps (10

3

)

60

0

8.5

78

C)

Oscillator with 

β ECAD/ITF

=1000, 

β 

BLUE-L=1000, No Mitosis

Timesteps (10

3

)

90

113.5

114.5 134.5

137.5

200

0

8.5

33

57

Timesteps (10

mcs)

50 100 150 200

Cell Percentage

20

40

60

80

100

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Supplementary Figure 4

A)

Direct Inhibition with 

β ECAD/ITF

=1000, No Mitosis, 90 Blue Cells

Timesteps (10

mcs)

1000

6000

11000

16000

21000

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

Cell Percentage

20

40

60

80

100

β BLUE-L->

B)

2-TF Permanent Inhibition with 

β ECAD/ITF

=1000, No Mitosis, 90 Blue Cells

β BLUE-L->

Timesteps (10

mcs)

1000

6000

11000

16000

21000

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

Cell Percentage

20

40

60

80

100

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Supplementary Figure 5

A)

Oscillator with 

β ECAD/ITF

=1000, 

β BLUE-L=6000, No Mitosis

Timesteps (10

mcs)

50 100 150 200

Cell Percentage

20

40

60

80

100

90

Timesteps (10

3

)

74.5

77.5

80

85.5

92

94

200

0

8.5

39

65

C)

Oscillator with 

β ECAD/ITF

=1000, 

β 

BLUE-L=11000, No Mitosis

Timesteps (10

mcs)

50 100 150 200

Cell Percentage

20

40

60

80

100

Timesteps (10

3

)

76

84.5

89.5

200

90

0

8.5

46.5

67

B)

Amplified Oscillator with 

β ECAD/ITF

=1000, 

β BLUE-L=11000

 

90

Timesteps (10

3

)

169

260

277

367

384

400

0

9.5

47.5

152.5

Cell Percentage

Timesteps (10

mcs)

100 200 300 400

20

40

60

80

100

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Supplementary Figure 6

B)

Amplified Oscillator with 

β ECAD/ITF=6000 β BLUE-L=1000, No Mitosis

Timesteps (10

mcs)

100 200 300 400

Cell Percentage

20

40

60

80

100

90

Timesteps (10

3

) 0

15.5

40

99.5

156.5 170.5

176

220.5

277.5

291.5 296.5

342

398.5

400

A)

Oscillator with 

β ECAD/ITF

=6000, 

β BLUE-L=1000, No Mitosis

Timesteps (10

mcs)

50 100 150 200

Cell Percentage

20

40

60

80

100

90

Timesteps (10

3

)

127

200

0

8.5

33

60

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint 

2023.11.18.567649v1.full-html.html
background image

Supplementary Figure 7

B)

Amplified Oscillator with 

β ECAD/ITF=6000 β BLUE-L=6000, No Mitosis

Timesteps (10

mcs)

100 200 300 400

Cell Percentage

20

40

60

80

100

90

Timesteps (10

3

) 0

15.5

46

107.5

119

129

141.5 193.5

205

213.5

226.5

400

A)

Oscillator with 

β ECAD/ITF

=6000, 

β BLUE-L=6000, No Mitosis

Timesteps (10

mcs)

50 100 150 200

Cell Percentage

20

40

60

80

100

90

Timesteps (10

3

)

200

0

8.5

39

65

.

CC-BY-NC-ND 4.0 International license

available under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint

this version posted November 18, 2023. 

https://doi.org/10.1101/2023.11.18.567649

doi: 

bioRxiv preprint