background image

 

Cellular and functional role of melanin-concentrating hormone in the lateral septum 

 

 

by  

Mikayla Payant 

 

 

A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in the partial fulfillment 

of the requirements for the degree of  

 

 

Doctor of Philosophy  

in  

Neuroscience 

 

 

Carleton University 

Ottawa, Ontario 

 

 

© 2023  

Mikayla Payant 

 

 

 

 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

ii 

 

Abstract 

Melanin-concentrating hormone (MCH) is a neuropeptide exclusively produced in the lateral 

hypothalamus and zona incerta with diverse functions including prominent effects on energy 

balance and anxiety that can impact the development of obesity and mood disorders. MCH 

neurons project to many brain regions, and MCH can have site-specific effects on neuronal 

activity and behavioural outcomes. Thus, in addition to global manipulations of MCH function, it 

is important to characterize the role of MCH at specific target sites. The lateral septum (LS) 

possesses MCH receptors and receives the strongest projection from MCH neurons. However, 

the function of MCH in the LS is not known. The LS has known roles in the regulation of 

feeding and anxiety-related behaviours, and such overlapping functions with those of MCH 

suggest the LS is a key target site of MCH in the brain. This thesis focused on understanding the 

role of MCH in the LS by 1) determining the mechanisms of MCH action on LS cells; 2) 

defining the behavioural significance of MCH on feeding and anxiety-like behaviour in the LS; 

and 3) elucidating the properties of MCH release and action within the LS. We found that MCH 

directly inhibited cells in the lateral LS through a novel chloride-mediated mechanism (Chapter 

2), and this inhibition promoted a context-dependent increase in feeding behaviour (Chapter 3). 

Furthermore, MCH was released and inhibited nearby cells predominantly separate from those 

that were directly innervated by MCH neurons, revealing three distinct populations of LS cells 

within this circuit. The activation of these parallel glutamate and MCH-mediated circuits 

increased feeding and decreased anxiety-like behaviour, respectively (Chapter 4). Together, we 

have shown that the LS is an important target of MCH neurons and that MCH and glutamate 

interactions are important for mediating behavioural outcomes. This work will improve our 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

iii 

 

understanding of MCH action in the brain, as well as identify novel neural mechanisms 

underlying feeding and anxiety-like behaviour. 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

iv 

 

Acknowledgements  

I would like to thank my thesis committee, Dr. Alfonso Abizaid and Dr. Michael Hildebrand. 

Your continued guidance, feedback, and encouragement over the years at committee meetings, 

conferences, and through conversations in the hallway is truly appreciated. Dr. Jenny Bruin, 

thank you for serving on my final thesis and comprehensive examination committee. I have 

learned a lot from you throughout the years and have enjoyed time spent with you and your lab 

through journal club and collaborations. Thank you to Dr. Christian Burgess for serving as my 

external examiner and taking the time to read my thesis and attend my defense.  

I would also like to thank Dr. Christian Burgess and Dr. Sylvain Williams for their help 

with setting up and troubleshooting my 

in vivo

 optogenetic experiments.  

A tremendous thank you to my supervisor Dr. Melissa Chee for taking a chance on me as 

a student with very little experience and teaching me the skills necessary to be a successful 

scientist and thoughtful person. I sincerely appreciate the care and effort you put in to create as 

many opportunities as possible for the growth and success of your students. You have always 

known when to encourage me to step out of my comfort zone and pursue opportunities that I 

would not have had the confidence to purse on my own. I will always be grateful for the 

opportunity to learn from you.  

To the Cheetos, past and present, thank you for being the best group of lab mates. It has 

been a pleasure working alongside so many wonderful people. Everyone has always been kind 

and generous, and this environment has made my time in the Chee lab very special. A special 

thank you to Duncan, Persephone, Anjali, Jesukhogie, Haneen, and Marina for their help with 

this project. Thank you to Bianca, Aditi, Persephone, Nikita, Yasmina, Duncan, and Alex for 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

 

many great memories in the lab and for making every conference experience so much fun. I will 

always be proud to be a Cheeto.  

To my support system outside of the lab: I would not have made it to this point without 

your unwavering support and encouragement. Thank you to my parents, you have always been 

my biggest cheerleaders and have gone above and beyond to support me in any venture. Your 

passion for healthcare, nutrition, and electrical work have serendipitously manifested into this 

research project that combines all three. To my brother Chris, thank you for your consistent 

support and for always having new ideas to think about and discuss at every family gathering. 

Your curiosity and desire to learn is inspiring. To Megan and Lisa, thank you for being the best 

and most supportive friends possible. I am lucky to have friends that are always a text or phone 

call away, ready with kind words and great advice. To my dog Sadie, thank you for keeping me 

company while writing and always being available for a hug.  

Finally, to Damian, I am so grateful for you. Thank you for being supportive and 

understanding of many long days spent at the lab and late nights at my computer. Thank you for 

always having food ready when I got home. You have helped me become a better person and 

scientist by encouraging me to also take care of myself. I will always appreciate your support 

throughout this chapter of our lives.  

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

vi 

 

Table of contents 

Abstract  

ii 

Acknowledgements 

iv 

Table of contents  

vi 

List of Abbreviations  

ix 

List of Publications  

xi 

 

 

Chapter 1: Melanin-concentrating hormone actions in the brain  

1.1 Overview  

1.2 MCH neurons 

1.2.1 Distribution of MCH projections 

1.3 Widespread distribution of MCH receptors  

1.3.1 MCH receptor activation  

1.4 MCH functions  

1.4.1 MCH and energy balance  

1.4.1.1 MCH transgenic models  

1.4.1.2. MCH administration promotes feeding  

1.4.1.3 Hypothalamic regions underlying MCH-mediated homeostatic feeding 

1.4.1.4 Brain regions underlying MCH-mediated effects on hedonic feeding  

1.4.1.5 The LS as a possible mediator of MCH-induced feeding  

1.4.2 MCH and anxiety  

10 

1.4.2.1 Brain regions underlying MCH-mediated effects on anxiety  

11 

1.4.2.2 LS as an integrative site for the expression of MCH-mediated anxiolysis  

12 

 1.5 Specific aims and hypotheses  

13 

 1.6 References  

17 

 

 

Chapter 2: Inhibitory actions of melanin-concentrating hormone in the lateral septum  

26 

2.1 Key Points  

27 

2.2 Abstract  

28 

2.3 Introduction  

29 

2.4 Materials and Methods  

31 

2.4.1 Neuroanatomy  

31 

2.4.2 Microscopy  

36 

2.4.3 Image analysis  

38 

2.4.4 Electrophysiology  

41 

2.4.5 Experimental design and statistical analysis  

43 

2.5 Results  

46 

2.5.1 Distribution of MCH-ir fibers throughout the LS  

46 

2.5.2 Distribution of 

Mchr1

-expressing LS cells  

47 

2.5.3 Distribution of MCHR1-expressing LS cells  

48 

2.5.4 Proximity of MCH-ir fibers at MCHR1-expressing LS cells 

50 

2.5.5 MCH inhibited LS cells  

52 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

vii 

 

2.5.6 MCH-mediated hyperpolarization is MCHR1-dependent  

54 

2.5.7 MCH activated a chloride channel to hyperpolarize LS cells  

56 

2.5.8 MCH did not inhibit GABAergic or glutamatergic input on LS cells  

59 

2.6 Discussion  

64 

2.7 References  

69 

2.8 Supporting figures  

77 

 

 

Chapter 3: Melanin-concentrating hormone promotes feeding through the lateral septum  

82 

3.1 Abstract  

83 

3.2 Introduction  

84 

3.3 Materials and Methods  

86 

3.3.1 Cannula Implantation  

87 

3.3.2 Intra-LS infusion  

87 

3.3.3 Food intake  

88 

3.3.4 Locomotor activity  

88 

3.3.5 Open field movement  

88 

3.3.6 Implant site validation  

89 

3.3.7 Experimental design and statistical analyses  

89 

3.4 Results  

90 

3.4.1 MCH infusion into the LS increased chow intake in male and female mice  

90 

3.4.2 MCH infusion into the LS increased intake of a palatable diet in male and 
female mice  

94 

3.4.3 MCH in the lateral LS increased locomotor activity  

97 

3.4.4 LS MCH infusion did not alter food seeking in an anxiogenic environment  

99 

3.5 Discussion  

101 

3.6 References  

105 

 

 

Chapter 4: Melanin-concentrating hormone and glutamate release in the lateral septum 
act on different cells to regulate feeding and anxiety-like behaviour 

110 

4.1 Abstract  

111 

4.2 Introduction  

112 

4.3 Materials and Methods  

114 

4.3.1 Stereotaxic surgery  

114 

4.3.2 Neuroanatomy  

116 

4.3.3 Construction of implants and patch cords  

118 

4.3.4 Behavioural testing  

120 

4.3.5 Confirmation of injection and implant sites  

121 

4.3.6 Electrophysiology  

121 

4.3.7 Data analysis  

124 

4.4 Results  

125 

4.4.1 Medial MCH neurons projected to the LS  

125 

4.4.2 MCH terminals did not overlap with MCH-immunoreactive fibers  

126 

4.4.3 MCH and glutamate innervated separate LS cells  

128 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

viii 

 

4.4.4 Channelrhodopsin-mediated MCH release and transmission extracellularly in 
the LS  

131 

4.4.5 Glutamate-mediated feeding by MCH nerve fibers in the LS  

134 

4.4.6 MCH-mediated anxiolysis in the LS  

136 

4.5 Discussion  

138 

4.6 References  

143 

4.7 Supporting figures  

147 

 

 

Chapter 5: Integrated Discussion  

148 

5.1 Summary  

148 

5.2 Local MCH release inhibited LS cells  

148 

5.3 Differential MCH and glutamate targets and function in the LS  

150 

5.3.1 Orexigenic effects of MCH and glutamate in the LS  

150 

5.3.2 Anxiolytic effect of MCH in the LS  

151 

5.4 Proposed model of MCH action in the LS  

151 

5.5 Conclusion  

153 

5.6 References  

154 

 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

ix 

 

List of Abbreviations 

Abbreviation 

Full Form 

ACB 

Nucleus Accumbens 

ACSF 

Artificial cerebrospinal fluid 

AgRP 

Agouti-Related peptide 

AMP 

Adenosine monophosphate 

ANOVA 

Analysis of variance 

ARA 

Allen Reference Atlas 

AP 

Anteroposterior 

AAV 

Adeno-associated virus 

BLA 

Basolateral amygdala 

CaCl2 

Calcium chloride 

CART 

Cocaine and amphetamine-regulated transcript 

ccg 

Corpus callosum, genu 

ChR2 

Channelrhodopsin-2 

CP 

Caudoputamen 

Crfr2 

Corticotropin-releasing factor receptor 2 

DAPI 

4',6-diamidino-2-phenylindole 

DAT 

Dopamine transporter 

DV 

Dorsoventral 

EYFP 

Enhanced yellow fluorescent protein 

EGTA 

Ethylene glycol-

bis(β

-aminoethyl ether)-N,N,N',N'-tetraacetic acid 

FC/PC 

Ferrule connector/physical contact 

fx 

Fornix 

GC 

Genome copies 

GABA 

Gamma-aminobutyric acid 

G

i

 

G protein, G

i

 subtype 

G

q

 

G protein, G

q

 subtype 

G

s

 

G protein, G

s

 subtype 

GFP 

Green fluorescent protein 

HEPES 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HGHpA 

Human growth hormone polyadenylation signal 

HDx 

High-dextrose diet 

i.p. 

Intraperitoneal 

icv 

Intracerebroventricular 

I

Current

Voltage 

ir 

Immunoreactive 

K-gluconate 

Potassium gluconate 

KO 

Knockout 

LHA 

Lateral hypothalamus 

LS 

Lateral septum 

LSr 

Lateral septal nucleus, rostral part 

LSc 

Lateral septal nucleus, caudal part 

LSv 

Lateral septal nucleus, ventral part 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

 

MCH 

Melanin-concentrating hormone 

MCHR1 

Melanin-concentrating hormone receptor 1 

MCHR2 

Melanin-concentrating hormone receptor 2 

mEPSC 

Miniature excitatory postsynaptic current 

mIPSC 

Miniature inhibitory postsynaptic current 

MSH 

Melanocyte-stimulating hormone 

MS 

Medial septal nucleus 

mTOR 

Mammalian target of papamycin 

mRNA 

Messenger ribonucleic acid 

mOsm/L 

Milliosmoles per liter 

NeuN 

Neuronal nuclei 

NDS 

Normal donkey serum 

NPY 

Neuropeptide Y 

ob/ob 

Leptin knockout mouse 

opt 

Optic tract 

PBS 

Phosphate buffered saline 

PBT 

PBS with Triton-X 

PKC 

Protein kinase C 

POMC 

Proopiomelanocortin 

RMP 

Resting membrane potential 

RRID 

Research resource identifier 

RT 

Room temperature 

sEPSC 

Spontaneous excitatory postsynaptic current 

sIPSC 

Spontaneous inhibitory postsynaptic current 

TTX 

Tetrodotoxin 

TC-MCH 7c 

MCHR1 antagonist  

V3 

Third ventricle 

Vglut2 

Vesicular glutamate transporter 2 

Vglut2-flox 

Vesicular glutamate transporter 2 floxed 

Vh 

Holding potential 

WPRE 

Woodchuck hepatitis virus posttranscriptional regulatory element 

WT 

Wild type 

ZT 

Zeitgeber time  

 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

xi 

 

List of publications  

 

Payant MA

,

 

Miller PA, Shankhatheertha A, Williams-Ikhenoba, El Khalili HB, Guirguis M, 

Chee MJ (2023). Melanin-concentrating hormone and glutamate release in the lateral septum act 
on different cells to regulate feeding and anxiety-like behaviour. 

In preparation for submission.  

 

Payant MA

, Shankhatheertha A, Chee MJ (2023). Melanin-concentrating hormone promotes 

feeding through the lateral septum. 

In preparation for submission.

   

 

Payant MA

, Spencer CD, Chee MJ (2023). Inhibitory actions of melanin-concentrating hormone 

in the lateral septum. Revisions requested. Preprint available at bioRxiv: 

https://doi.org/10.1101/2023.10.21.562777 

 
Payant MA

, Sankhe AS, Dumiaty Y, Levy Z, Campbell J, Chee MJ. Dietary fructose induces  

synaptic plasticity at neuropeptide Y neurons (2023). 

In preparation for submission. 

 
Payant MA

, Chee MJ (2021). Neural mechanisms underlying the role of fructose in 

overfeeding. Neurosci Biobehav Rev 128: 346-357.  
 

Hoyek MP, Merhi RC, Blair HL, Spencer CD, 

Payant MA

, Martin Alfonso DI, Zhang M, 

Matteo G, Chee MJ, Bruin JE (2020). Female mice exposed to low doses of dioxin during 

pregnancy and lactation have increased susceptibility to diet-induced obesity and diabetes. Mol 

Metab 42:101104.  

 

^

Negishi K, 

^

Payant MA

^

Schumacker KS, Wittman G, Butler RM, Lechan 

RM, Steinbusch HWM, Khan AM, Chee MJ (2020). Distributions of hypothalamic neuron 

populations co-expressing tyrosine hydroxylase and the vesicular GABA transporter in the 

mouse. J Comp Neurol 528(11): 1833-1855. 

 

 

^

denotes equal authorship 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

 

Chapter 1. General introduction: Melanin-concentrating hormone actions in the brain 

1.1

 

 

Overview  

Feeding is a complex behaviour that is influenced by many factors which may include energy 

status, emotional state, palatability, and nutritional content of food. The hypothalamus has long 

been known as a master regulator of homeostatic feeding as it possesses many neuropeptide-

expressing cell populations that can increase or decrease food intake. Information from the 

hypothalamus may be communicated to higher order brain regions through the release of 

neuropeptide and neurotransmitter messengers to allow for the integration of physiological state 

with other sensory and environmental information. This integration can result in the modification 

of behaviour based on context and may, for example, decrease feeding in a dangerous or anxiety-

provoking environment. Investigating how neuropeptides and their co-expressed 

neurotransmitters act within target brain regions is critical to understanding the mechanisms 

underlying context-dependent feeding behaviour and may assist in developing treatments for 

feeding-related disorders such as obesity or anorexia. This thesis focuses on one population of 

hypothalamic neurons that express the neuropeptide melanin-concentrating hormone (MCH) and 

the function of MCH neuron projections to the lateral septum (LS) to advance our understanding 

of brain circuitry regulating feeding behaviour.  

 MCH is a neuropeptide produced in the lateral hypothalamus (LHA) and has been 

implicated in widespread physiological functions such as feeding, mood disorders, memory, and 

sleep. These functional insights have been gained largely from transgenic mouse models of 

global MCH or MCH receptor (MCHR1) deletion, thus the specific target sites and neural 

circuits that underlie these MCH functions are not well-defined. Recent developments using viral 

tracing approaches revealed that the LS receives the most synaptic terminals from MCH neurons. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

 

The coincident distribution of MCH fibers in the LS also overlap with known functions of the LS 

that regulate feeding and anxiety. In this thesis, we investigated the role of MCH within the LS 

by elucidating the neuronal mechanism underlying MCH action in the LS (Aim 1) and 

characterizing the contributions of MCH projections in the LS on food-related and anxiety-like 

behaviours (Aim 2 and Aim 3).

 

1.2

 

 

MCH neurons 

MCH production is largely restricted to neurons in the LHA and zona incerta (Bittencourt et al., 

1992; Broberger et al., 1998), though 

Mch

 mRNA has also been reported in the medial preoptic 

nucleus, paraventricular nucleus, and ventral LS (LSv) during lactation (Beekly et al., 2020). 

Within the LHA, medial MCH neurons appear first in development and their distribution spreads 

laterally, anteriorly, and posteriorly to peak between embryonic day 12 and 13 (Brischoux et al., 

2001). In adult mice, MCH neurons are interspersed around hypocretin/orexin neurons but are 

spread more dorsoventrally and rostrocaudally to cover a larger area (Skofitsch et al., 1985; 

Broberger et al., 1998).  

MCH neurons are heterogeneous and can also express additional chemical messengers. 

MCH is synthesized from the prepro-MCH gene 

Pmch

, thus nearly every MCH neuron co-

expresses with Neuropeptide EI and Neuropeptide GE that are also made from 

Pmch

 

(Bittencourt et al., 1992). Moreover, there are subpopulations of MCH neurons that produce 

cocaine and amphetamine related transcript (CART) and dynorphin (Broberger, 1999; Harthoorn 

et al., 2005; Croizier et al., 2010). MCH neurons that co-express CART are found medially 

within the LHA (Broberger, 1999; Croizier et al., 2010) and thus may represent an anatomically 

and functionally distinct subpopulation of MCH neurons.   

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

 

In addition to neuropeptides, MCH neurons may also colocalize with classical 

neurotransmitters. MCH neurons reliably colocalize with the vesicular glutamate transporter, 

vGLUT2, and can release glutamate at downstream projection sites (Chee et al., 2015; Mickelsen 

et al., 2017; Beekly et al., 2020). MCH neurons also express GABA synthesizing enzymes and 

have been shown to release glutamate in the tuberomammillary nucleus (Jego et al., 2013) but 

interestingly, MCH neurons do not express traditional vesicular GABA transporters, such as the 

vesicular GABA transporter 

Vgat

, thus they may rely on non-canonical mechanisms or alternate 

vesicular transporters for the packaging and release of GABA (Beekly et al., 2020; Chee et al., 

2015; Mickelsen et al., 2017). 

 

1.2.1

 

Distribution of MCH projections 

MCH-immunoreactive fibers can be detected in most of the central nervous system with the 

medial MCH cells co-expressing CART projecting rostrally, and lateral MCH cells that do not 

co-express CART project caudally toward the spinal cord (Brischoux et al., 2002; Croizier et al., 

2010). MCH-immunoreactive fibers have been found in the LS (Skofitsch et al., 1985; 

Bittencourt et al., 1992), with a higher density in the ventral LS (Bittencourt et al., 1992) and 

likely originating from medial MCH neurons. Expression in the LSv may overlap with Substance 

P-immunoreactive fibers and cells expressing the estrogen receptor (Risold and Swanson, 

1997b). Tracing studies from MCH neurons have shown that there is strong innervation from 

virally-labeled projections of MCH neurons that were concentrated more dorsally in the LS and 

reflect sites for glutamate release, though it is not clear if these projections also carry MCH 

(Chee et al., 2015; Liu et al., 2022). 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

 

1.3

 

 

Widespread distribution of MCH receptors  

MCH has two endogenous receptors in the human brain, MCHR1 and MCHR2 (Hill et al., 

2001), however only MCHR1 is present in the rodent brain (Tan 2002). MCHR1 distribution 

parallels the extensive expression of MCH-immunoreactive fibers with many regions expressing 

Mchr1

 mRNA in the rat (Lembo et al., 1999; Saito et al., 2001) and mouse brain (Chee et al., 

2013). Moderate expression of 

Mchr1

 mRNA and ciliary MCHR1 immunoreactivity in the LS 

(Lembo et al., 1999; Hervieu et al., 2000; Saito et al., 2001; Chee et al., 2013) is more prominent 

in the LSv (Diniz et al., 2020). However, injections of rhodamine-conjugated MCH led to a high 

expression of rhodamine-labeled cells in the LS and suggests the presence of functional MCHR1 

at levels higher than what may be detected with traditional staining methods (Ruiz-Viroga et al., 

2021).  

1.3.1

 

MCH receptor activation  

MCHR1 is a G-protein coupled receptor that can couple to G

i

-, G

s

-, and G

q

-protein-mediated 

pathways 

in vitro

 to both increase intracellular calcium levels and inhibit cyclic AMP production 

(Bachner et al., 1999; Hawes et al., 2000; Pissios et al., 2003). Furthermore, MCHR1 signaling 

can lead to the inhibition of voltage-dependent calcium channels (Gao et al., 2003), activation of 

calcium-induced chloride currents (Bachner et al., 1999), and activation of G-protein-coupled 

inwardly-rectifying potassium channels (Bachner et al., 1999) in cultured cells.  

In brain slices, MCH application can lead to neuronal inhibition in several brain regions 

(Zheng et al., 2005; Wu et al., 2009; Sears et al., 2010; Devera et al., 2015; Al-Massadi et al., 

2019; Liu et al., 2022), however the mechanism of MCHR1 activation is site-specific. MCH-

mediated inhibition occurs postsynaptically through the activation of potassium channels in the 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

 

nucleus accumbens (Sears et al., 2010) and medial septum (Wu et al., 2009). By contrast, MCH 

has presynaptic inhibitory effects on glutamatergic input to neurons in the nucleus of the solitary 

tract (Zheng et al., 2005) but presynaptically enhances glutamatergic and GABAergic input in 

the LS (Liu et al., 2022). 

1.4

 

 

MCH functions 

MCH was first isolated from the pituitary of salmon where it aggregates melanin granules to 

lighten the skin color of fish (Kawauchi et al., 1983). MCH is a highly conserved neuropeptide 

found in many species. The first report of MCH action in mammals described its orexigenic 

actions that stimulated feeding upon intracerebroventricular (ICV) administration, thus 

implicating its contribution to energy balance (Vaughan et al., 1989; Qu et al., 1996). Ensuing 

studies have since determined that MCH can modulate many other functions, including sleep, 

memory, motivation, olfaction, maternal behaviour, mood disorders, and immune function 

(Lakaye et al., 2009; Takase et al., 2014). This thesis focuses on two major roles of MCH

energy balance and anxiety

as these pertain to overlapping functions of the LS. 

1.4.1

 

MCH and energy balance  

1.4.1.1

 

MCH transgenic models  

Genetic manipulations have established that MCH is necessary for the maintenance of body 

weight and energy expenditure. Knocking out 

Pmch

 in mice leads to decreased body weight, 

reduced fat mass, hypophagia, and increased oxygen consumption (Shimada et al., 1998). MCH-

knockout mice are also resistant to diet-induced obesity and adverse metabolic effects of aging, 

like insulin resistance, due to their increase in energy expenditure (Kokkotou et al., 2005; Jeon et 

al., 2006). Unsurprisingly, a similar phenotype can also be produced by ablating MCH neurons 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

 

(Alon and Friedman, 2006; Whiddon and Palmiter, 2013) or knocking out the MCH receptor, 

MCHR1 (Chen et al., 2002). MCH deletion, MCHR1 deletion, or MCH neuron ablation in leptin 

deficient 

ob

/

ob

 mice can also increase energy expenditure and lessen the obese phenotype 

(Segal-Lieberman et al., 2003; Alon and Friedman, 2006; Bjursell et al., 2006). On the other 

hand, overexpressing the MCH gene leads to mice that are hyperphagic and develop symptoms 

of metabolic disorder, such as elevated insulin, leptin, and glucose levels compared to wildtype 

controls (Ludwig et al., 2001).  

MCH decreases energy expenditure through downregulation of the mesolimbic dopamine 

system. MCH knockout mice and mice with ablated MCH neurons have increased expression of 

markers of dopamine transmission such as DAT, have increased dopamine release in the nucleus 

accumbens, and are more sensitive to blocking dopamine reuptake (Pissios et al., 2008; Whiddon 

and Palmiter, 2013). Specifically, MCH can inhibit dopamine release in the nucleus accumbens, 

and deletion of MCHR1 on GABAergic neurons in the nucleus accumbens increases locomotor 

activity (Chee et al., 2019).     

1.4.1.2

 

MCH administration promotes feeding 

Acute and chronic MCH administration can promote feeding leading to diet-induced obesity. 

Acute MCH infusion into the lateral ventricle or third ventricle of rats dose-dependently 

increases food intake primarily within the first 1

2 hours after infusion and decreases toward 

baseline levels within 6 hours (Qu et al., 1996; Rossi et al., 1997; Kela et al., 2003). Consistent 

with this idea, endogenous MCH levels are highest in the cerebrospinal fluid at the beginning of 

the dark phase, prior to animals eating their first meal (Noble et al., 2018). Specifically, MCH 

administration can increase the rate of licking a sweet solution during the first minute of a meal, 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

 

suggesting that MCH is involved in post-oral appetition to increase food consumption (Baird et 

al., 2006; Lord et al., 2021).  

Chronic intracerebroventricular (ICV) infusion of MCH, lasting between 6 and 14 days, 

produces an obesogenic phenotype, increasing food intake (Rossi et al., 1997; Marsh et al., 2002; 

Kawata et al., 2017), body weight (Marsh et al., 2002; Kawata et al., 2017), body fat (Marsh et 

al., 2002), circulating glucose and insulin, and increased liver adiposity (Kawata et al., 2017). 

The hallmarks of metabolic disorder are enhanced when MCH-treated mice were given a high fat 

diet (Gomori et al., 2003). Infusions of an MCH receptor agonist replicates this phenotype 

(Shearman et al., 2003) and correspondingly, ICV infusions or oral administration of an MCH 

receptor antagonist can suppress the development of diet-induced obesity (Shearman et al., 2003; 

Ito et al., 2010; Kawata et al., 2017). Although the orexigenic effects of MCH are robust in 

males, the increased estradiol in females reduces the effects of MCH (Messina et al., 2006; 

Santollo and Eckel, 2008, 2013). 

1.4.1.3

 

Hypothalamic regions underlying MCH-mediated homeostatic feeding 

The neural circuitry that underlies the orexigenic effect of MCH is largely unknown but may be a 

result of MCH release into the cerebrospinal fluid to reach target sites within the forebrain (Baird 

et al., 2008; Noble et al., 2018).   

MCH-induced hyperphagia may be mediated through several hypothalamic nuclei, 

including the arcuate nucleus, and lateral hypothalamic nucleus (Rossi et al., 1999; Abbott et al., 

2003; Romero-Pico et al., 2018). In the arcuate nucleus, neurons co-expressing agouti-related 

peptide (AgRP) and neuropeptide Y (NPY), and neurons co-expressing proopiomelanocortin 

(POMC) and CART are well known to have orexigenic and anorexigenic functions, respectively 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

 

(Andermann and Lowell, 2017). Although MCH function is not required for the orexigenic 

effects of NPY or AgRP (Marsh et al., 2002), MCH application to hypothalamic explants leads 

to increased release of NPY and AgRP while decreasing CART and alpha-MSH release (Abbott 

et al., 2003). Moreover, MCH inhibits POMC neurons to increase feeding, body weight, 

adiposity, and glucose intolerance (Al-Massadi et al., 2019). In the LHA, antagonism or 

knockdown of opioid receptors blocks the ability of MCH to stimulate feeding (Romero-Pico et 

al., 2018) which may be a result of acting on neurons that co-express MCHR1 (Imbernon et al., 

2016). 

 

1.4.1.4

 

Brain regions underlying MCH-mediated effects on hedonic feeding 

In addition to driving homeostatic feeding to promote a positive energy balance, MCH also 

interacts with the reward system to enhance the value and intake of sweet foods. The preference 

for the non-nutritive sweetener, sucralose, surpasses the preference for sucrose when paired with 

optogenetic activation of MCH neurons (Domingos et al., 2013). This response is associated with 

activation of ventral tegmental area dopamine neurons and higher dopamine levels within the 

nucleus accumbens (Domingos et al., 2013). Additionally, MCH infused directly into the nucleus 

accumbens or activation of neurons that project to the nucleus accumbens drives consumption of 

chow and sucrose in males (Georgescu et al., 2005; Lopez et al., 2011; Terrill et al., 2020) and 

may be mediated through activation of opioid receptors (Lopez et al., 2011). 

 

MCH may also be involved in learned aspects of feeding such as recognizing food cues 

that can lead to overeating. MCHR1-KO mice can still learn a conditioned stimulus but no longer 

overeat when the cue was present, suggesting MCH signaling is necessary for the expression of 

cue-induced overeating (Sherwood et al., 2015).  

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

 

1.4.1.5

 

The LS as a possible mediator of MCH-induced feeding 

Like MCH, the LS is also known to regulate homeostatic and hedonic feeding. However, while 

MCH actions are orexigenic, the LS mediates anorexigenic actions, as loss of LS function via 

lesions to the entire septal area or inhibition by GABA

A

 or GABA

B

 receptor activation increases 

food intake and body weight (Singh and Meyer, 1968; Stoller, 1972; King and Nance, 1986; 

Calderwood et al., 2020; Gabriella et al., 2022). In particular, the ventral LS (LSv) is most 

prominent for the anorexigenic effects of the LS (Pankey et al., 2008), as optogenetic activation 

of LSv neurons decreases feeding and LSv neurons decrease their activity during a feeding bout 

(Xu et al., 2019). Thus, the inhibitory effects of MCHR1 activation within the LS may contribute 

to driving homeostatic feeding.   

Opioid signaling within the LS plays an important role in LS modulation of food intake. 

There are enkephalinergic neurons within the LS along the lateral border as well as enkephalin-

immunoreactive fibers (Risold and Swanson, 1997b). Leu-enkephalin is downregulated in fasted 

male animals (Kovacs et al., 2005) but injections of a µ-opioid receptor agonist and morphine 

into the LS increased feeding (Calderwood et al., 2020; Calderwood et al., 2022). In fact, it was 

found that the LS is one of the most effective site of morphine-stimulated feeding (Stanley et al., 

1988). Since the orexigenic effects of MCH are in part dependent on the activation of µ-opioid 

receptors, the LS represents a possible region mediating this effect.  

The inhibitory effect of the LS on hedonic feeding is related to GABAergic transmission 

in the LSv, which can paradoxically also increase food seeking. LSv GABAergic neurons are 

important for inhibiting palatable foods but do not affect homeostatic-driven feeding following a 

fast (Chen et al., 2022). LS lesions and intra-LS infusions of GABA

A

 and GABA

B

 agonists 

increase motivation (Pubols, 1966; Lorens and Kondo, 1971) and consumption of a palatable diet 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

10 

 

independent of their nutritional status (Beatty and Schwartzbaum, 1968; Mitra et al., 2014). In 

the LSv, strong activation of neurotensin expressing neurons allowing for neuropeptide release 

can suppress all feeding, however stimulation that would only release GABA inhibits hedonic 

feeding. There may be additional complexity to this circuit as there are different subtypes of 

neurotensin-expressing LSv neurons that are activated during approach and those that are 

inhibited during consumption of palatable food. The activation of these neurons can both 

decrease latency to food approach but suppress food intake when stimulated at different times 

(Chen et al., 2022). Food approach may depend on the ability to remember the location of food 

and consistent with this, activation of inputs from the ventral hippocampus engages LS 

GABAergic neurons to enhance food-related spatial memory (Decarie-Spain et al., 2022). MCH 

can potentiate hippocampal input to the LS (Liu et al., 2022), thus this circuit may also be 

involved in recognizing and approaching food cues in the environment that can lead to 

overeating.  

Summary

. The LS is involved in both homeostatic and hedonic feeding. The orexigenic 

effects of MCH may be mediated through the LS by directly inhibiting LS neurons, acting 

through opioid signaling, or modulating hippocampal input to the LS to alter food-seeking 

behaviour.  

1.4.2

 

MCH and anxiety  

Studies from genetic or chemogenetic manipulations of the MCH system have most consistently 

supported an anxiogenic role for MCH. Chemogenetic activation of MCH neurons increases 

anxiety-like behaviour in the elevated plus maze, open field test, marble burying test, and 

sucrose preference test (He et al., 2022). By contrast, MCH-KO mice are more resistant to stress-

induced hyperthermia (Smith et al., 2006). Likewise, anxiety-like behaviours are minimized in 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

11 

 

MCHR1-KO animals, as they spend more time in the center of the open field or open arms of the 

elevated plus maze, have no increase in temperature in the stress-induced hyperthermia 

paradigm, and spend more time interacting with an intruder in the social interaction test (Roy et 

al., 2006). Furthermore, MCHR1 antagonists on their own can decrease behavioural measures of 

stress and anxiety in a social interaction test, pup separation test, stress induced hyperthermia, 

and elevated plus maze making them a potential therapeutic treatment (Borowsky et al., 2002; 

Chaki et al., 2005; Chaki et al., 2015), but importantly, MCHR1 antagonism can reverse anxiety-

like behaviours caused by MCH infusion (Smith et al., 2006) or by stress (Chaki et al., 2015). 

While global MCH manipulations through genetic deletion of MCH receptors or 

activation of all MCH neurons suggest an anxiogenic function of MCH, it is not clear if this 

effect is due to compensatory mechanisms from developmental models or contribution of other 

chemical messengers. The role of MCH on anxiety can be heterogenous because despite reports 

that central administration of MCH can be anxiogenic (Smith et al., 2006), some report 

anxiolytic outcomes (Kela et al., 2003) or no effects (Duncan et al., 2005). This distinction may 

be clarified by investigating the effects of MCH in specific brain regions, which may reveal 

anxiogenic and anxiolytic effects.

 

1.4.2.1

 

Brain regions underlying MCH-mediated effects on anxiety. 

Anxiety is regulated by many different brain regions, and differential MCH action in the 

prefrontal cortex and dorsal raphe or basolateral amygdala (BLA) may mediate the anxiolytic 

and anxiogenic effects of MCH, respectively. MCH injection into the dorsal raphe is anxiogenic 

(Oh et al., 2020) and may be a result of decreased activity of serotonin neurons (Devera et al., 

2015). In addition, injections of MCH into the BLA increases anxiety-like behaviour and 

interferes with the beneficial effects of exercise on anxiety (Kim et al., 2015; He et al., 2022). 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

12 

 

Furthermore, administration of an MCHR1 antagonist into the BLA blocks increases in anxiety-

like behaviour observed with chemogenetic activation of MCH neurons (He et al., 2022). 

In contrast to the anxiogenic effects of MCH in the dorsal raphe and BLA, global 

MCHR1 deletion decreases serotonin in the prefrontal cortex and eliminates the surge of 

serotonin caused by a forced swim stressor (Roy et al., 2006). Moreover, intranasal MCH 

improves stress-induced decreased phosphorylation of transcription factors, including mTOR, 

and synaptic proteins in the prefrontal cortex. The anxiolytic effects of MCH were blocked by 

co-administration with the mTOR inhibitor, rapamycin, suggesting an important role of this 

pathway in the prefrontal cortex in MCH-mediated decreases in anxiety (Oh et al., 2020). 

1.4.2.2

 

LS as an integrative site for the expression of MCH-mediated anxiolysis 

The LS has long been known to play a role in stress and anxiety but may have a modulatory role 

depending on the context and chemical messengers involved. LS cells are activated by several 

stressful paradigms including the foot shock avoidance test, elevated plus maze, and air puff-

induced ultrasonic vocalization test (Duncan et al., 1996; Thomas et al., 2013), but their firing 

rate may decrease following the stressor (Contreras et al., 2004). Specifically, a subpopulation of 

LS cells that express neurotensin are activated only in response to a stressor that can be escaped 

and may contribute to the context dependent regulation of behaviour (Azevedo et al., 2020). 

Septal lesions reduce anxiety in the elevated plus maze and shock probe-burying test 

(Treit and Pesold, 1990; Menard and Treit, 1996), and pharmacological inhibition of the LS via 

intra-septal infusions of GABA agonists were anxiolytic in punished drinking, shock probe 

burying task, and elevated plus maze (Drugan et al., 1986; Pesold and Treit, 1996; Lamontagne 

et al., 2016). In conjunction with this, blocking glutamatergic transmission in the LS also has an 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

13 

 

anxiolytic effect in females (Molina-Hernandez et al., 2006). The release of glutamate from 

MCH neurons may thus have anxiogenic actions, but as the net effect of MCH neuron activation 

inhibits LS activity and that MCHR1 activation is known to inhibit postsynaptic cells (Chee et 

al., 2015; Liu et al., 2022), MCH projections may have net anxiolytic actions in the LS.  

Furthermore, the expression of stress and anxiety in the LS may be attributed to 

dysfunctions in the brain serotonin system. The stress hormone, corticotropin releasing hormone, 

can depress serotonin levels in the LS (Price and Lucki, 2001). While MCH can depress neuronal 

firing in the dorsal raphe (Devera et al., 2015), it may also act presynaptically at serotonergic 

projections to suppress transmitter release (Sears et al., 2010) and reduce anxiety through the LS 

(Viana Mde et al., 2008). 

1.5

 

 

Specific aims and hypotheses 

Rationale

.

 The LS is one of the strongest projection sites of MCH neurons and possesses both 

MCH-immunoreactive fibers and MCH receptors. However, the effects of MCH in the LS have 

not been well characterized. Given the anatomical evidence for MCH action in the LS and the 

functional similarities between known roles of MCH and those supported by the LS, I 

hypothesize that the LS is a brain region that mediates MCH action in the regulation of food-

related and anxiety-like behaviours. My thesis aims to define and characterize the mechanisms of 

MCH action (

Aim 1

Chapter 2

), behavioural contributions of MCH projections (

Aim 2

Chapter 3 and 4

), and conditions underlying MCH release (

Aim 3

Chapter 4

) in the LS. These 

objectives will elucidate whether the LS is a prominent brain region underlying MCH-mediated 

behaviours. 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

14 

 

Aim 1. Determine the neuroanatomical and cellular basis of MCH action in the LS 

(Chapter 2). 

The LS is a diverse and heterogenous structure, and while the expression of MCH fibers and 

receptors have previously been shown, the precise LS region that supports MCH action has not 

been defined. Therefore, we generated neuroanatomical maps to chart the distribution of MCH 

fibers and receptors within the entire LS (

Aim 1a

) and used these maps to triangulate hotspots 

for MCH action. We then performed electrophysiological recordings to define the neuronal 

mechanisms underlying MCH action (

Aim 1b

).  

Aim 1a. Map the distribution of MCH fibers, 

Mchr1 

mRNA, and MCHR1 protein  

expression within the LS. 

We will use a combination of immunohistochemistry and 

in situ

 hybridization to generate 

standardized neuroanatomical maps of MCH-immunoreactive fibers, 

Mchr1

 mRNA, and 

MCHR1 protein expression throughout the whole LS in male and female mice. I hypothesize that 

LS regions where MCH fiber and receptor distribution overlap constitute hotspots of MCH 

action.  

 

Aim 1b. Determine the cellular mechanisms of MCH action at LS cells. 

Whole-cell patch-clamp recordings from LS cells will assess the effect of bath-applied MCH on 

afferent input and excitability of LS cells. I hypothesize that MCH application can produce long-

lasting inhibition of LS cells in a MCHR1-dependent manner.

 

Aim 2. To determine the effects of MCH on feeding and anxiety-like behaviour in the LS 

(Chapter 3 and 4).  

The LS comprises the densest projections from MCH neurons and has known functions 

mediating feeding and anxiety-like behaviour that overlap with known functions of the MCH 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

15 

 

system. As MCH neurons may release both MCH and/or glutamate in the LS, we will directly 

compare the behavioural effect following MCH infusion (

Aim 2a

) or optogenetic stimulation of 

MCH projections, which may include the release of both MCH and glutamate (

Aim 2b

). We will 

isolate the effect of MCH using pharmacological or transgenic approaches, which includes 

generating the

 Pmch-cre;Vglut2-flox 

mouse where glutamate release was disabled.  

Aim 2a. Define the behavioural response of intra-LS MCH administration on food 

intake (Chapter 3). 

We will determine the effect of intra-LS infusion of MCH and MCHR1 activation on context-

dependent feeding. I hypothesize that intra-LS infusion will promote food intake and that this 

orexigenic action will be blocked when pretreated with a MCHR1 antagonist. 

 

Aim 2b. Define the behavioural response following optogenetic stimulation of fiber 

projections from MCH neurons (Chapter 4). 

We will (

i

) optimize optogenetic protocols, including the conditions for viral expression, optic 

fiber implants, and photostimulation intensity or duration, and (

ii

) compare behavioural 

outcomes following the optogenetic stimulation of channelrhodopsin-expressing fiber projections 

from 

Pmch-cre

 and 

Pmch-cre;Vglut2-flox 

mice during 

ad libitum

 feeding and the open field test. 

The specificity of MCH actions will also be assessed following treatment with a MCHR1 

antagonist. I hypothesize that photostimulating MCH terminals in the LS of 

Pmch-cre

 mice will 

produce similar behavioural results as MCH infusion thereby increasing food intake and anxiety-

like behaviour but to a lesser extent than in 

Pmch-cre;Vglut2-flox

 because glutamate release 

from MCH neurons may oppose the actions of MCH.  

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

16 

 

Aim 3. To determine the properties of MCH release and action within the LS (Chapter 4). 

While MCH neurons may release both glutamate and MCH, it is not known whether LS neurons 

that are directly innervated by MCH cells are also MCH-sensitive. We will photostimulate 

channelrhodopsin-expressing 

Pmch-cre

 nerve terminals in the LS to determine if LS cells that 

are directly innervated by MCH neurons via monosynaptic glutamate release are also inhibited 

by application of a short puff of MCH and whether a comparable inhibition is observed 

following prolonged high frequency photostimulation. I hypothesize that high frequency 

stimulation will be required for light-evoked MCH release and predict that MCH-sensitive cells 

may be distinct from those innervated by glutamate release because MCH has been reported to 

act via volume transmission. 

 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

17 

 

1.6  

References 

Abbott CR, Kennedy AR, Wren AM, Rossi M, Murphy KG, Seal LJ, Todd JF, Ghatei MA, 

Small CJ, Bloom SR (2003) Identification of hypothalamic nuclei involved in the orexigenic 
effect of melanin-concentrating hormone. Endocrinology 144:3943-3949. 

Al-Massadi O et al. (2019) MCH Regulates SIRT1/FoxO1 and Reduces POMC Neuronal 

Activity to Induce Hyperphagia, Adiposity, and Glucose Intolerance. Diabetes 68:2210-2222. 

Alon T, Friedman JM (2006) Late-onset leanness in mice with targeted ablation of melanin 

concentrating hormone neurons. J Neurosci 26:389-397. 

Andermann ML, Lowell BB (2017) Toward a Wiring Diagram Understanding of Appetite 

Control. Neuron 95:757-778. 

Azevedo EP, Tan B, Pomeranz LE, Ivan V, Fetcho R, Schneeberger M, Doerig KR, Liston C, 

Friedman JM, Stern SA (2020) A limbic circuit selectively links active escape to food 
suppression. Elife 9:

 

e58894

Bachner D, Kreienkamp H, Weise C, Buck F, Richter D (1999) Identification of melanin 

concentrating hormone (MCH) as the natural ligand for the orphan somatostatin-like receptor 
1 (SLC-1). FEBS Lett 457:522-524. 

Baird JP, Rios C, Gray NE, Walsh CE, Fischer SG, Pecora AL (2006) Effects of melanin-

concentrating hormone on licking microstructure and brief-access taste responses. Am J 
Physiol Regul Integr Comp Physiol 291:R1265-1274. 

Baird JP, Rios C, Loveland JL, Beck J, Tran A, Mahoney CE (2008) Effects of hindbrain 

melanin-concentrating hormone and neuropeptide Y administration on licking for water, 
saccharin, and sucrose solutions. Am J Physiol Regul Integr Comp Physiol 294:R329-343. 

Beatty WW, Schwartzbaum JS (1968) Consummatory behavior for sucrose following septal 

lesions in the rat. J Comp Physiol Psychol 65:93-102. 

Beekly BG, Frankel WC, Berg T, Allen SJ, Garcia-Galiano D, Vanini G, Elias CF (2020) 

Dissociated Pmch and Cre Expression in Lactating Pmch-Cre BAC Transgenic Mice. Front 
Neuroanat 14:60. 

Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) 

The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization 
histochemical characterization. J Comp Neurol 319:218-245. 

Bjursell M, Gerdin AK, Ploj K, Svensson D, Svensson L, Oscarsson J, Snaith M, Tornell J, 

Bohlooly YM (2006) Melanin-concentrating hormone receptor 1 deficiency increases insulin 
sensitivity in obese leptin-deficient mice without affecting body weight. Diabetes 55:725-733. 

Bono BS, Koziel Ly NK, Miller PA, Williams-Ikhenoba J, Dumiaty Y, Chee MJ (2022) Spatial 

distribution of beta-klotho mRNA in the mouse hypothalamus, hippocampal region, 
subiculum, and amygdala. J Comp Neurol 530:1634-1657. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

18 

 

Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B, Heurich R, 

Lichtblau H, Shaposhnik Z, Daniewska I, Blackburn TP, Branchek TA, Gerald C, Vaysse PJ, 
Forray C (2002) Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating 
hormone-1 receptor antagonist. Nat Med 8:825-830. 

Bouyer K, Simerly RB (2013) Neonatal leptin exposure specifies innervation of presympathetic 

hypothalamic neurons and improves the metabolic status of leptin-deficient mice. J Neurosci 
33:840-851. 

Brischoux F, Fellmann D, Risold PY (2001) Ontogenetic development of the diencephalic MCH 

neurons: a hypothalamic 'MCH area' hypothesis. Eur J Neurosci 13:1733-1744. 

Brischoux F, Cvetkovic V, Griffond B, Fellmann D, Risold PY (2002) Time of genesis 

determines projection and neurokinin-3 expression patterns of diencephalic neurons 
containing melanin-concentrating hormone. Eur J Neurosci 16:1672-1680. 

Broberger C (1999) Hypothalamic cocaine- and amphetamine-regulated transcript (CART) 

neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating 
hormone, orexin/hypocretin and neuropeptide Y. Brain Res 848:101-113. 

Broberger C, De Lecea L, Sutcliffe JG, Hokfelt T (1998) Hypocretin/orexin- and melanin-

concentrating hormone-expressing cells form distinct populations in the rodent lateral 
hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J 
Comp Neurol 402:460-474. 

Calderwood MT, Tseng A, Glenn Stanley B (2020) Lateral septum mu opioid receptors in 

stimulation of feeding. Brain Res 1734:146648. 

Calderwood MT, Tseng A, Gabriella I, Stanley BG (2022) Feeding behavior elicited by mu 

opioid and GABA receptor activation in the lateral septum. Pharmacol Biochem Behav 
217:173395. 

Chaki S, Yamaguchi J, Yamada H, Thomsen W, Tran TA, Semple G, Sekiguchi Y (2005) 

ATC0175: an orally active melanin-concentrating hormone receptor 1 antagonist for the 
potential treatment of depression and anxiety. CNS Drug Rev 11:341-352. 

Chaki S, Shimazaki T, Nishiguchi M, Funakoshi T, Iijima M, Ito A, Kanuma K, Sekiguchi Y 

(2015) Antidepressant/anxiolytic potential and adverse effect liabilities of melanin-
concentrating hormone receptor 1 antagonists in animal models. Pharmacol Biochem Behav 
135:154-168. 

Chee MJ, Pissios P, Maratos-Flier E (2013) Neurochemical characterization of neurons 

expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. J Comp 
Neurol 521:2208-2234. 

Chee MJ, Arrigoni E, Maratos-Flier E (2015) Melanin-concentrating hormone neurons release 

glutamate for feedforward inhibition of the lateral septum. J Neurosci 35:3644-3651. 

Chee MJ, Hebert AJ, Briancon N, Flaherty SE, 3rd, Pissios P, Maratos-Flier E (2019) 

Conditional deletion of melanin-concentrating hormone receptor 1 from GABAergic neurons 
increases locomotor activity. Mol Metab 29:114-123. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

19 

 

Chen Y, Hu C, Hsu CK, Zhang Q, Bi C, Asnicar M, Hsiung HM, Fox N, Slieker LJ, Yang DD, 

Heiman ML, Shi Y (2002) Targeted disruption of the melanin-concentrating hormone 
receptor-1 results in hyperphagia and resistance to diet-induced obesity. Endocrinology 
143:2469-2477. 

Chen Z, Chen G, Zhong J, Jiang S, Lai S, Xu H, Deng X, Li F, Lu S, Zhou K, Li C, Liu Z, Zhang 

X, Zhu Y (2022) A circuit from lateral septum neurotensin neurons to tuberal nucleus controls 
hedonic feeding. Mol Psychiatry 27:4843-4860. 

Contreras CM, Chacon L, Rodriguez-Landa JF, Bernal-Morales B, Gutierrez-Garcia AG, 

Saavedra M (2004) Spontaneous firing rate of lateral septal neurons decreases after forced 
swimming test in Wistar rat. Prog Neuropsychopharmacol Biol Psychiatry 28:343-348. 

Croizier S, Franchi-Bernard G, Colard C, Poncet F, La Roche A, Risold PY (2010) A 

comparative analysis shows morphofunctional differences between the rat and mouse 
melanin-concentrating hormone systems. PLoS One 5:e15471. 

Decarie-Spain L, Liu CM, Lauer LT, Subramanian K, Bashaw AG, Klug ME, Gianatiempo IH, 

Suarez AN, Noble EE, Donohue KN, Cortella AM, Hahn JD, Davis EA, Kanoski SE (2022) 
Ventral hippocampus-lateral septum circuitry promotes foraging-related memory. Cell Rep 
40:111402. 

Devera A, Pascovich C, Lagos P, Falconi A, Sampogna S, Chase MH, Torterolo P (2015) 

Melanin-concentrating hormone (MCH) modulates the activity of dorsal raphe neurons. Brain 
Res 1598:114-128. 

Diniz GB, Battagello DS, Klein MO, Bono BSM, Ferreira JGP, Motta-Teixeira LC, Duarte JCG, 

Presse F, Nahon JL, Adamantidis A, Chee MJ, Sita LV, Bittencourt JC (2020) Ciliary 
melanin-concentrating hormone receptor 1 (MCHR1) is widely distributed in the murine CNS 
in a sex-independent manner. J Neurosci Res 98:2045-2071. 

Domingos AI, Sordillo A, Dietrich MO, Liu ZW, Tellez LA, Vaynshteyn J, Ferreira JG, 

Ekstrand MI, Horvath TL, de Araujo IE, Friedman JM (2013) Hypothalamic melanin 
concentrating hormone neurons communicate the nutrient value of sugar. Elife 2:e01462. 

Dong H (2008) The Allen reference atlas: A digital color brain atlas of the C57BL/6J male 

mouse. . Hoboken, NJ: John Wiley & Sons. 

Drugan RC, Skolnick P, Paul SM, Crawley JN (1986) Low doses of muscimol produce 

anticonflict actions in the lateral septum of the rat. Neuropharmacology 25:203-205. 

Duncan EA, Proulx K, Woods SC (2005) Central administration of melanin-concentrating 

hormone increases alcohol and sucrose/quinine intake in rats. Alcohol Clin Exp Res 29:958-
964. 

Duncan GE, Knapp DJ, Breese GR (1996) Neuroanatomical characterization of Fos induction in 

rat behavioral models of anxiety. Brain Res 713:79-91. 

Elias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J, Tatro JB, Hoffman GE, 

Ollmann MM, Barsh GS, Sakurai T, Yanagisawa M, Elmquist JK (1998) Chemically defined 
projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp 
Neurol 402:442-459. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

20 

 

Gabriella I, Tseng A, Sanchez KO, Shah H, Stanley BG (2022) Stimulation of GABA Receptors 

in the Lateral Septum Rapidly Elicits Food Intake and Mediates Natural Feeding. Brain Sci 
12. 

Gao XB, Ghosh PK, van den Pol AN (2003) Neurons synthesizing melanin-concentrating 

hormone identified by selective reporter gene expression after transfection in vitro: transmitter 
responses. J Neurophysiol 90:3978-3985. 

Georgescu D, Sears RM, Hommel JD, Barrot M, Bolanos CA, Marsh DJ, Bednarek MA, Bibb 

JA, Maratos-Flier E, Nestler EJ, DiLeone RJ (2005) The hypothalamic neuropeptide melanin-
concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and 
forced-swim performance. J Neurosci 25:2933-2940. 

Gomori A, Ishihara A, Ito M, Mashiko S, Matsushita H, Yumoto M, Ito M, Tanaka T, Tokita S, 

Moriya M, Iwaasa H, Kanatani A (2003) Chronic intracerebroventricular infusion of MCH 
causes obesity in mice. Melanin-concentrating hormone. Am J Physiol Endocrinol Metab 
284:E583-588. 

Harthoorn LF, Sane A, Nethe M, Van Heerikhuize JJ (2005) Multi-transcriptional profiling of 

melanin-concentrating hormone and orexin-containing neurons. Cell Mol Neurobiol 25:1209-
1223. 

Hawes BE, Kil E, Green B, O'Neill K, Fried S, Graziano MP (2000) The melanin-concentrating 

hormone receptor couples to multiple G proteins to activate diverse intracellular signaling 
pathways. Endocrinology 141:4524-4532. 

He X, Li Y, Zhang N, Huang J, Ming X, Guo R, Hu Y, Ji P, Guo F (2022) Melanin-

concentrating hormone promotes anxiety and intestinal dysfunction via basolateral amygdala 
in mice. Front Pharmacol 13:906057. 

Hervieu GJ, Cluderay JE, Harrison D, Meakin J, Maycox P, Nasir S, Leslie RA (2000) The 

distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) 
receptor gene, slc-1, in the central nervous system of the rat. Eur J Neurosci 12:1194-1216. 

Hill J, Duckworth M, Murdock P, Rennie G, Sabido-David C, Ames RS, Szekeres P, Wilson S, 

Bergsma DJ, Gloger IS, Levy DS, Chambers JK, Muir AI (2001) Molecular cloning and 
functional characterization of MCH2, a novel human MCH receptor. J Biol Chem 276:20125-
20129. 

Imbernon M, Sanchez-Rebordelo E, Romero-Pico A, Kallo I, Chee MJ, Porteiro B, Al-Massadi 

O, Contreras C, Ferno J, Senra A, Gallego R, Folgueira C, Seoane LM, van Gestel M, Adan 
RA, Liposits Z, Dieguez C, Lopez M, Nogueiras R (2016) Hypothalamic kappa opioid 
receptor mediates both diet-induced and melanin concentrating hormone-induced liver 
damage through inflammation and endoplasmic reticulum stress. Hepatology 64:1086-1104. 

Ito M, Ishihara A, Gomori A, Matsushita H, Ito M, Metzger JM, Marsh DJ, Haga Y, Iwaasa H, 

Tokita S, Takenaga N, Sato N, MacNeil DJ, Moriya M, Kanatani A (2010) Mechanism of the 
anti-obesity effects induced by a novel melanin-concentrating hormone 1-receptor antagonist 
in mice. Br J Pharmacol 159:374-383. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

21 

 

Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, 

Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory 
circuit in the hypothalamus. Nat Neurosci 16:1637-1643. 

Jeon JY, Bradley RL, Kokkotou EG, Marino FE, Wang X, Pissios P, Maratos-Flier E (2006) 

MCH-/- mice are resistant to aging-associated increases in body weight and insulin resistance. 
Diabetes 55:428-434. 

Kawata Y, Okuda S, Hotta N, Igawa H, Takahashi M, Ikoma M, Kasai S, Ando A, Satomi Y, 

Nishida M, Nakayama M, Yamamoto S, Nagisa Y, Takekawa S (2017) A novel and selective 
melanin-concentrating hormone receptor 1 antagonist ameliorates obesity and hepatic 
steatosis in diet-induced obese rodent models. Eur J Pharmacol 796:45-53. 

Kawauchi H, Kawazoe I, Tsubokawa M, Kishida M, Baker BI (1983) Characterization of 

melanin-concentrating hormone in chum salmon pituitaries. Nature 305:321-323. 

Kela J, Salmi P, Rimondini-Giorgini R, Heilig M, Wahlestedt C (2003) Behavioural analysis of 

melanin-concentrating hormone in rats: evidence for orexigenic and anxiolytic properties. 
Regul Pept 114:109-114. 

Kim TK, Kim JE, Park JY, Lee JE, Choi J, Kim H, Lee EH, Kim SW, Lee JK, Kang HS, Han PL 

(2015) Antidepressant effects of exercise are produced via suppression of hypocretin/orexin 
and melanin-concentrating hormone in the basolateral amygdala. Neurobiol Dis 79:59-69. 

King TR, Nance DM (1986) Neuroestrogenic control of feeding behavior and body weight in 

rats with kainic acid lesions of the lateral septal area. Physiol Behav 37:475-481. 

Kokkotou E, Jeon JY, Wang X, Marino FE, Carlson M, Trombly DJ, Maratos-Flier E (2005) 

Mice with MCH ablation resist diet-induced obesity through strain-specific mechanisms. Am 
J Physiol Regul Integr Comp Physiol 289:R117-124. 

Kong D, Vong L, Parton LE, Ye C, Tong Q, Hu X, Choi B, Bruning JC, Lowell BB (2010) 

Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated 
by UCP2, and regulates peripheral glucose homeostasis. Cell Metab 12:545-552. 

Kovacs EG, Szalay F, Halasy K (2005) Fasting-induced changes of neuropeptide 

immunoreactivity in the lateral septum of male rats. Acta Biol Hung 56:185-197. 

Krimer LS, Jakab RL, Goldman-Rakic PS (1997) Quantitative three-dimensional analysis of the 

catecholaminergic innervation of identified neurons in the macaque prefrontal cortex. J 
Neurosci 17:7450-7461. 

Lakaye B, Coumans B, Harray S, Grisar T (2009) Melanin-concentrating hormone and immune 

function. Peptides 30:2076-2080. 

Lambe EK, Krimer LS, Goldman-Rakic PS (2000) Differential postnatal development of 

catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus 
monkey. J Neurosci 20:8780-8787. 

Lamontagne SJ, Olmstead MC, Menard JL (2016) The lateral septum and anterior hypothalamus 

act in tandem to regulate burying in the shock-probe test but not open-arm avoidance in the 
elevated plus-maze. Behav Brain Res 314:16-20. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

22 

 

Lembo PM, Grazzini E, Cao J, Hubatsch DA, Pelletier M, Hoffert C, St-Onge S, Pou C, 

Labrecque J, Groblewski T, O'Donnell D, Payza K, Ahmad S, Walker P (1999) The receptor 
for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. 
Nat Cell Biol 1:267-271. 

Liu JJ, Tsien RW, Pang ZP (2022) Hypothalamic melanin-concentrating hormone regulates 

hippocampus-dorsolateral septum activity. Nat Neurosci 25:61-71. 

Lopez CA, Guesdon B, Baraboi ED, Roffarello BM, Hetu M, Richard D (2011) Involvement of 

the opioid system in the orexigenic and hedonic effects of melanin-concentrating hormone. 
Am J Physiol Regul Integr Comp Physiol 301:R1105-1111. 

Lord MN, Subramanian K, Kanoski SE, Noble EE (2021) Melanin-concentrating hormone and 

food intake control: Sites of action, peptide interactions, and appetition. Peptides 137:170476. 

Lorens SA, Kondo CY (1971) Differences in the consummatory and operant behaviors of male 

and female septal rats. Physiol Behav 6:487-491. 

Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier JS, 

Maratos-Flier E (2001) Melanin-concentrating hormone overexpression in transgenic mice 
leads to obesity and insulin resistance. J Clin Invest 107:379-386. 

Marsh DJ et al. (2002) Melanin-concentrating hormone 1 receptor-deficient mice are lean, 

hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci U S A 
99:3240-3245. 

Menard J, Treit D (1996) Lateral and medial septal lesions reduce anxiety in the plus-maze and 

probe-burying tests. Physiol Behav 60:845-853. 

Messina MM, Boersma G, Overton JM, Eckel LA (2006) Estradiol decreases the orexigenic 

effect of melanin-concentrating hormone in ovariectomized rats. Physiol Behav 88:523-528. 

Mickelsen LE, Kolling FWt, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE, Jackson 

AC (2017) Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin 
and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene 
Expression Analysis. eNeuro 4. 

Mitra A, Lenglos C, Timofeeva E (2014) Activation of GABAA and GABAB receptors in the 

lateral septum increases sucrose intake by differential stimulation of sucrose licking activity. 
Behav Brain Res 273:82-88. 

Molina-Hernandez M, Tellez-Alcantara NP, Perez-Garcia J, Olivera-Lopez JI, Jaramillo MT 

(2006) Estrus variation in anticonflict-like effects of the mGlu5 receptor antagonist MTEP, 
microinjected into lateral septal nuclei of female Wistar rats. Pharmacol Biochem Behav 
84:385-391. 

Negishi K, Payant MA, Schumacker KS, Wittmann G, Butler RM, Lechan RM, Steinbusch 

HWM, Khan AM, Chee MJ (2020) Distributions of hypothalamic neuron populations 
coexpressing tyrosine hydroxylase and the vesicular GABA transporter in the mouse. J Comp 
Neurol 528:1833-1855. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

23 

 

Noble EE, Hahn JD, Konanur VR, Hsu TM, Page SJ, Cortella AM, Liu CM, Song MY, Suarez 

AN, Szujewski CC, Rider D, Clarke JE, Darvas M, Appleyard SM, Kanoski SE (2018) 
Control of Feeding Behavior by Cerebral Ventricular Volume Transmission of Melanin-
Concentrating Hormone. Cell Metab 28:55-68 e57. 

Oh JY, Liu QF, Hua C, Jeong HJ, Jang JH, Jeon S, Park HJ (2020) Intranasal Administration of 

Melanin-Concentrating Hormone Reduces Stress-Induced Anxiety- and Depressive-Like 
Behaviors in Rodents. Exp Neurobiol 29:453-469. 

Pankey EA, Shurley MR, King BM (2008) A re-examination of septal lesion-induced weight 

gain in female rats. Physiol Behav 93:8-12. 

Paxinos G, Franklin K (2001) The Mouse Brain in Stereotaxic Coordinates. San Diego, CA: 

Academic Press. 

Pesold C, Treit D (1996) The neuroanatomical specificity of the anxiolytic effects of intra-septal 

infusions of midazolam. Brain Res 710:161-168. 

Pissios P, Trombly DJ, Tzameli I, Maratos-Flier E (2003) Melanin-concentrating hormone 

receptor 1 activates extracellular signal-regulated kinase and synergizes with G(s)-coupled 
pathways. Endocrinology 144:3514-3523. 

Pissios P, Frank L, Kennedy AR, Porter DR, Marino FE, Liu FF, Pothos EN, Maratos-Flier E 

(2008) Dysregulation of the mesolimbic dopamine system and reward in MCH-/- mice. Biol 
Psychiatry 64:184-191. 

Price ML, Lucki I (2001) Regulation of serotonin release in the lateral septum and striatum by 

corticotropin-releasing factor. J Neurosci 21:2833-2841. 

Pubols LM (1966) Changes in food-motivated behavior of rats as a function of septal and 

amygdaloid lesions. Exp Neurol 15:240-254. 

Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, 

Przypek R, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in 
the central regulation of feeding behaviour. Nature 380:243-247. 

Risold PY, Swanson LW (1997a) Connections of the rat lateral septal complex. Brain Res Brain 

Res Rev 24:115-195. 

Risold PY, Swanson LW (1997b) Chemoarchitecture of the rat lateral septal nucleus. Brain Res 

Brain Res Rev 24:91-113. 

Romero-Pico A, Sanchez-Rebordelo E, Imbernon M, Gonzalez-Touceda D, Folgueira C, Senra 

A, Ferno J, Blouet C, Cabrera R, van Gestel M, Adan RA, Lopez M, Maldonado R, Nogueiras 
R, Dieguez C (2018) Melanin-Concentrating Hormone acts through hypothalamic kappa 
opioid system and p70S6K to stimulate acute food intake. Neuropharmacology 130:62-70. 

Rossi M, Choi SJ, O'Shea D, Miyoshi T, Ghatei MA, Bloom SR (1997) Melanin-concentrating 

hormone acutely stimulates feeding, but chronic administration has no effect on body weight. 
Endocrinology 138:351-355. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

24 

 

Rossi M, Beak SA, Choi SJ, Small CJ, Morgan DG, Ghatei MA, Smith DM, Bloom SR (1999) 

Investigation of the feeding effects of melanin concentrating hormone on food intake--action 
independent of galanin and the melanocortin receptors. Brain Res 846:164-170. 

Roy M, David NK, Danao JV, Baribault H, Tian H, Giorgetti M (2006) Genetic inactivation of 

melanin-concentrating hormone receptor subtype 1 (MCHR1) in mice exerts anxiolytic-like 
behavioral effects. Neuropsychopharmacology 31:112-120. 

Ruiz-Viroga V, Urbanavicius J, Torterolo P, Lagos P (2021) In vivo uptake of a fluorescent 

conjugate of melanin-concentrating hormone in the rat brain. J Chem Neuroanat 114:101959. 

Saito Y, Cheng M, Leslie FM, Civelli O (2001) Expression of the melanin-concentrating 

hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol 435:26-40. 

Sankhe AS, Bordeleau D, Alfonso DIM, Wittman G, Chee MJ (2023) Loss of glutamatergic 

signalling from MCH neurons reduced anxiety-like behaviours in novel environments. J 
Neuroendocrinol 35:e13222. 

Santollo J, Eckel LA (2008) The orexigenic effect of melanin-concentrating hormone (MCH) is 

influenced by sex and stage of the estrous cycle. Physiol Behav 93:842-850. 

Santollo J, Eckel LA (2013) Oestradiol decreases melanin-concentrating hormone (MCH) and 

MCH receptor expression in the hypothalamus of female rats. J Neuroendocrinol 25:570-579. 

Sears RM, Liu RJ, Narayanan NS, Sharf R, Yeckel MF, Laubach M, Aghajanian GK, DiLeone 

RJ (2010) Regulation of nucleus accumbens activity by the hypothalamic neuropeptide 
melanin-concentrating hormone. J Neurosci 30:8263-8273. 

Segal-Lieberman G, Bradley RL, Kokkotou E, Carlson M, Trombly DJ, Wang X, Bates S, Myers 

MG, Jr., Flier JS, Maratos-Flier E (2003) Melanin-concentrating hormone is a critical 
mediator of the leptin-deficient phenotype. Proc Natl Acad Sci U S A 100:10085-10090. 

Shearman LP, Camacho RE, Sloan Stribling D, Zhou D, Bednarek MA, Hreniuk DL, Feighner 

SD, Tan CP, Howard AD, Van der Ploeg LH, MacIntyre DE, Hickey GJ, Strack AM (2003) 
Chronic MCH-1 receptor modulation alters appetite, body weight and adiposity in rats. Eur J 
Pharmacol 475:37-47. 

Sherwood A, Holland PC, Adamantidis A, Johnson AW (2015) Deletion of Melanin 

Concentrating Hormone Receptor-1 disrupts overeating in the presence of food cues. Physiol 
Behav 152:402-407. 

Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E (1998) Mice lacking melanin-

concentrating hormone are hypophagic and lean. Nature 396:670-674. 

Singh D, Meyer DR (1968) Eating and drinking by rats with lesions of the septum and the 

ventromedial hypothalamus. J Comp Physiol Psychol 65:163-166. 

Skofitsch G, Jacobowitz DM, Zamir N (1985) Immunohistochemical localization of a melanin 

concentrating hormone-like peptide in the rat brain. Brain Res Bull 15:635-649. 

Smith DG, Davis RJ, Rorick-Kehn L, Morin M, Witkin JM, McKinzie DL, Nomikos GG, 

Gehlert DR (2006) Melanin-concentrating hormone-1 receptor modulates neuroendocrine, 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

25 

 

behavioral, and corticolimbic neurochemical stress responses in mice. 
Neuropsychopharmacology 31:1135-1145. 

Sparta DR, Stamatakis AM, Phillips JL, Hovelso N, van Zessen R, Stuber GD (2011) 

Construction of implantable optical fibers for long-term optogenetic manipulation of neural 
circuits. Nat Protoc 7:12-23. 

Stanley BG, Lanthier D, Leibowitz SF (1988) Multiple brain sites sensitive to feeding 

stimulation by opioid agonists: a cannula-mapping study. Pharmacol Biochem Behav 31:825-
832. 

Stoller WL (1972) Effects of septal and amygdaloid lesions on discrimination, eating and 

drinking. Physiol Behav 8:823-828. 

Takase K, Kikuchi K, Tsuneoka Y, Oda S, Kuroda M, Funato H (2014) Meta-analysis of 

melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic 
phenotypes. PLoS One 9:e99961. 

Terrill SJ, Subramanian KS, Lan R, Liu CM, Cortella AM, Noble EE, Kanoski SE (2020) 

Nucleus accumbens melanin-concentrating hormone signaling promotes feeding in a sex-
specific manner. Neuropharmacology 178:108270. 

Thomas E, Burock D, Knudsen K, Deterding E, Yadin E (2013) Single unit activity in the lateral 

septum and central nucleus of the amygdala in the elevated plus-maze: a model of exposure 
therapy? Neurosci Lett 548:269-274. 

Treit D, Pesold C (1990) Septal lesions inhibit fear reactions in two animal models of anxiolytic 

drug action. Physiol Behav 47:365-371. 

Vaughan JM, Fischer WH, Hoeger C, Rivier J, Vale W (1989) Characterization of melanin-

concentrating hormone from rat hypothalamus. Endocrinology 125:1660-1665. 

Viana Mde B, Zangrossi H, Jr., Onusic GM (2008) 5-HT1A receptors of the lateral septum 

regulate inhibitory avoidance but not escape behavior in rats. Pharmacol Biochem Behav 
89:360-366. 

Whiddon BB, Palmiter RD (2013) Ablation of neurons expressing melanin-concentrating 

hormone (MCH) in adult mice improves glucose tolerance independent of MCH signaling. J 
Neurosci 33:2009-2016. 

Wu M, Dumalska I, Morozova E, van den Pol A, Alreja M (2009) Melanin-concentrating 

hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy 
balance to reproduction. Proc Natl Acad Sci U S A 106:17217-17222. 

Xu Y, Lu Y, Cassidy RM, Mangieri LR, Zhu C, Huang X, Jiang Z, Justice NJ, Xu Y, Arenkiel 

BR, Tong Q (2019) Identification of a neurocircuit underlying regulation of feeding by stress-
related emotional responses. Nat Commun 10:3446. 

Zheng H, Patterson LM, Morrison C, Banfield BW, Randall JA, Browning KN, Travagli RA, 

Berthoud HR (2005) Melanin concentrating hormone innervation of caudal brainstem areas 
involved in gastrointestinal functions and energy balance. Neuroscience 135:611-625.

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

26 

 

Chapter 2. Inhibitory actions of melanin-concentrating hormone in the lateral septum

  

Mikayla A Payant, C Duncan Spencer, Melissa J Chee

 

Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada 

 

Currently under review and available at https://doi.org/10.1101/2023.10.21.562777

 

Author Contributions. 

Study conception and design: M.J.C. Acquisition, analysis, and 

interpretation of neuroanatomical datasets: M.A.P, C.D.S, M.J.C. Acquisition, analysis, and 
interpretation of electrophysiological datasets: M.A.P, M.J.C. Initial manuscript draft: M.A.P, 
C.D.S. Manuscript editing: M.A.P, M.J.C.  

 

Acknowledgements

 The authors thank Dr. Ryan Chee for technical assistance writing 

MATLAB scripts. 

 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

27 

 

2. 1   Key points

 

 

RESEARCH QUESTION.

 Melanin-concentrating hormone (MCH) neurons have dense 

nerve terminals within the lateral septum (LS), a key region underlying stress- and 

anxiety-like behaviours that are emerging roles of the MCH system, but it is not known if 

the LS is a MCH target site.  

 

NEUROANATOMY.

 We found spatial overlap between MCH-immunoreactive fibers, 

Mchr1

 mRNA, and MCHR1 protein expression especially along the lateral border of the 

LS.  

 

ELECTROPHYSIOLOGY.

 Within MCHR1-rich regions, MCH directly inhibited LS 

cells by increasing a chloride conductance in a protein kinase C-dependent manner.  

 

SIGNIFICANCE.

 

Electrophysiological MCH effects in brain slices have been elusive 

and even fewer have described the mechanisms of MCH action. Our findings 

demonstrated, to our knowledge, the first description of MCHR1 Gq-coupling in brain 

slices, which was previously predicted in cell or primary culture models only. Together, 

these findings defined hotspots and mechanistic underpinnings for MCH effects such as 

in stress- and anxiety-related behaviours.  

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

28 

 

2.2  

Abstract 

Melanin-concentrating hormone (MCH) neurons can co-express several neuropeptides or 

neurotransmitters and send widespread projections throughout the brain. Notably, there is a 

dense cluster of nerve terminals from MCH neurons in the lateral septum (LS) that innervate LS 

cells by glutamate release. The LS is also a key region integrating stress- and anxiety-like 

behaviours that are also emerging roles of MCH neurons. However, it is not known if the MCH 

peptide acts within the LS or whether MCH target sites are localized. We analysed the 

projections from MCH neurons in male and female mice anteroposteriorly throughout the LS and 

found spatial overlap between the distribution pattern of MCH-immunoreactive (MCH-ir) fibers 

with MCH receptor 

Mchr1

 mRNA hybridization or MCHR1-ir cells. This overlap was most 

prominent along the ventral and lateral border of the rostral part of the LS (LSr). Most MCHR1-

labeled LS neurons laid adjacent to passing MCH-ir fibers, but some MCH-ir varicosities 

directly contacted the soma or cilium of MCHR1-labeled LS neurons. We thus performed whole-

cell patch-clamp recordings from MCHR1-rich LSr regions to determine if and how LS cells 

respond to MCH. Bath application of MCH to acute brain slices activated a bicuculline-sensitive 

chloride current that directly hyperpolarized LS cells. This MCH-mediated hyperpolarization 

was blocked by calphostin C and suggested that the inhibitory actions of MCH were mediated by 

protein kinase C-dependent activation of GABA

A

 receptors. Taken together, these findings 

defined potential hotspots within the LS that may elucidate the contributions of MCH to stress- 

or anxiety-related feeding behaviours. 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

29 

 

2.3  

Introduction 

 

Neurons that produce melanin-concentrating hormone (MCH) are found primarily within the 

lateral hypothalamic area (LHA) (Broberger 

et al.

, 1998; Broberger, 1999; Croizier 

et al.

, 2010; 

Beekly 

et al.

, 2020), but they can send widespread projections throughout the brain (Skofitsch 

et 

al.

, 1985; Bittencourt 

et al.

, 1992). MCH neurons can express additional neuropeptides 

(Harthoorn 

et al.

, 2005; Mickelsen 

et al.

, 2017) and neurotransmitters like GABA (Jego 

et al.

2013) and glutamate (Chee 

et al.

, 2015). MCH has well-established functions in energy balance 

(Qu 

et al.

, 1996; Shimada 

et al.

, 1998; Ludwig 

et al.

, 2001; Kokkotou 

et al.

, 2005; Pissios 

et al.

2006) and sleep (Verret 

et al.

, 2003; Ferreira 

et al.

, 2017), but recent findings have also 

elaborated on the roles of MCH for regulating stress (Kim & Han, 2016), motivation (Mul 

et al.

2011), and memory (Monzon et al., 1999; Adamantidis et al., 2005; Adamantidis and Lecea, 

2009). The diverse functions of MCH thus implicate distinctive target sites for MCH.  

MCH neurons strongly innervate the lateral septum (LS) via direct glutamatergic 

projections (Chee 

et al.

, 2015), but it is not known whether MCH plays a role in the LS. MCH 

immunoreactivity has been detected in the LS of the rat brain (Skofitsch 

et al.

, 1985; Bittencourt 

et al.

, 1992), but this has not been examined in detail for the mouse brain. In rats, 

immunohistochemical staining showed that the LS comprises moderate levels of MCH-

immunoreactive (MCH-ir) fibers, with the highest level of immunoreactivity in the ventral part 

of the LS (Bittencourt 

et al.

, 1992). In addition to the presence of MCH-ir fibers, the expression 

of MCH receptors (MCHR) also aid in identifying the LS as a potential target site of MCH 

action. There are two known MCH receptors in the human brain, MCHR1 and MCHR2 (Hill 

et 

al.

, 2001), but only MCHR1 is present in the rodent brain (Tan 

et al.

, 2002). Similar to the 

widespread distribution of MCH-ir fibers, many brain regions can express 

Mchr1

 mRNA within 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

30 

 

the rat (Lembo 

et al.

, 1999; Saito 

et al.

, 2001) and mouse brain (Chee 

et al.

, 2013). Indeed, there 

is a moderate level of 

Mchr1

 mRNA in both the rat (Lembo 

et al.

, 1999; Saito 

et al.

, 2001) and 

mouse LS (Chee 

et al.

, 2013).  

MCHR1 is a G-protein coupled receptor that can couple to G

i

- (Hawes 

et al.

, 2000), G

q

-

 

(Hawes 

et al.

, 2000), or G

s

-protein-mediated pathways (Pissios 

et al.

, 2003). However, MCH 

action in the brain is largely inhibitory by hyperpolarizing the membrane and suppressing action 

potential firing (Gao, 2009), for example at the lateral hypothalamus (Rao 

et al.

, 2008), nucleus 

accumbens (Georgescu 

et al.

, 2005; Sears 

et al.

, 2010), or medial septal nucleus (Wu 

et al.

2009). In this study, we assessed the neuroanatomical and electrophysiological premise for MCH 

action in the LS and determined whether MCH could inhibit the activity of LS cells.  

We described the distribution of MCH-ir fibers, 

Mchr1

 mRNA, and MCHR1 protein in 

the mouse LS, and we used these fiber and cell maps to guide patch-clamp recordings to identify 

putative sites and mechanisms of MCH action. As the MCH system (Mystkowski 

et al.

, 2000; 

Mogi 

et al.

, 2005; Rondini 

et al.

, 2007; Takase 

et al.

, 2014; Terrill 

et al.

, 2020; Teixeira 

et al.

2020) as well as the LS has been shown to be sexually dimorphic, we completed our analyses in 

the male and female brain but determined that there were no sex differences in the 

neuroanatomical and electrophysiological effects of MCH. We observed similar distribution 

patterns between MCH-ir, 

Mchr1

 mRNA, and MCHR1 protein throughout the entire 

rostrocaudal extent of the LS and found that MCH directly inhibited LS cells by recruiting 

protein kinase C (PKC) and activating a GABA

A

 receptor-mediated chloride conductance. These 

findings indicate that MCH can act in the LS to regulate neuron activity and suggest that the LS 

is an important projection site for MCH functions.  

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

31 

 

2.4  

Materials and Methods  

The use of all animals has been approved by the Carleton University Animal Care Committee on 

Animal Use Protocol 110940 in accordance with guidelines provided by the Canadian Council 

on Animal Care. All C57BL/6J

 

wild type mice (stock 000664; Jackson Laboratory, Bar Harbor, 

ME) were bred in house and maintained on a 12-hour light-dark cycle (22

24°C; 40

60% 

humidity). All mice were given 

ad libitum

 access to food (Teklad Global Diets 2014, Envigo, 

Mississauga, Canada) and water. 

 

2.4.1   Neuroanatomy 

Tissue processing. 

Mice

 

were anesthetized with an intraperitoneal injection (i.p.) of chloral 

hydrate (700 mg/kg; MilliporeSigma, Burlington, MA) prepared in sterile saline, transcardially 

perfused with cold (4

C) saline (0.9% NaCl), then followed by fixation with 10% formalin 

(VWR, Radnor, PA). The brain was extracted from the skull, post-fixed overnight in 10% 

formalin (24 hr, 4

C), and cryoprotected in phosphate buffered saline (PBS) containing 20% 

sucrose and 0.05% sodium azide (24 hr, 4

C). Mice whose brains were processed for MCHR1 

immunohistochemistry were perfused with saline followed by 250 mL of 10% formalin. Brains 

were post-fixed in 20% sucrose dissolved in 10% formalin (4 hr, 4

C) then cryoprotected as 

above.  

All brains were sliced into five series of 30 

m coronal sections using a freezing 

microtome (Spencer Lens Co., Buffalo, NY). Two tissue series remained free-floating in PBS-

diluted formalin (comprising PBS-azide and formalin in a 9:1 ratio) prior to 

immunohistochemical staining for MCH or MCHR1. Three tissue series were mounted onto 

Fisherbrand Superfrost Plus Microscope Slides (Fischer Scientific, Waltham, MA) to use for 

in 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

32 

 

situ

 hybridization. One series, designated as probe tissue, was used for 

Mchr1

 hybridization. 

Two adjacent series served as a positive control and a negative control to the probe tissue. The 

negative control tissue was later used for Nissl staining to parcellate and define the 

neuroanatomical boundaries of each slice. After tissues were mounted, the glass slides were air 

dried at room temperature (RT, 20

23

C; 1 hr), and then at −20

C (30 min) before being stored 

at −80

C.  

Single-label immunohistochemistry.

 To detect MCH immunoreactivity, the tissue was 

washed in six 5-min exchanges of PBS and pretreated with 10 mM sodium citrate for 5 min 

(75°C) followed by 0.3% hydrogen peroxide in PBS for 20 min (RT). Following three 10-min 

PBS exchanges, the tissue was then blocked with 3% normal donkey serum (Jackson 

ImmunoResearch Laboratories, Inc., West Grove, PA) dissolved in PBS with 0.25% Triton-X 

(PBT) and 0.05% sodium azide for 2 hr (NDS; RT). After blocking, the tissue was incubated 

with an anti-rabbit MCH antibody (1:2,000; kindly provided by Dr. E. Maratos-Flier, Beth Israel 

Deaconess Medical Center; RRID: AB_2314774; (Elias 

et al.

, 1998; Chee 

et al.

, 2013) overnight 

in NDS (RT). The following day, the tissue was washed six times in PBS (5 min each) then 

incubated with a biotinylated goat anti-rabbit antibody (1:500; Jackson ImmunoResearch 

Laboratories; RRID: AB_2337965) prepared in NDS for 1 hr (RT). The tissue was washed three 

times in PBS for 10 min each and treated with avidin biotin horseradish peroxidase (PK-6100, 

Vector Laboratories, Newark, CA) in PBT for 30 min (RT). Tissue was washed in three 10-min 

PBS exchanges and underwent tyramine signal amplification by treating with PBT comprising 

0.005% hydrogen peroxide and 0.5% borate-buffered biotinylated (Sulfo-NHS-LC biotin; 21335, 

Thermo Fisher Scientific, Waltham, MA) tyramine (T90344, MilliporeSigma) for 20 min (RT). 

Following three 10-min washes in PBS, the tissue was incubated with an Alexa Fluor 647-

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

33 

 

conjugated streptavidin antibody (1:500; Jackson ImmunoResearch Laboratories; RRID: AB_ 

2341101) and NeuroTrace 435/455 (1:50; N21479, Thermo Fisher Scientific) in NDS without 

sodium azide for 2 hr (RT). Slices were then mounted on SuperFrost Plus microscope slides and 

coverslipped with ProLong Diamond Antifade Mountant (Thermo Fisher Scientific). 

Dual-label immunohistochemistry

.

 To detect MCHR1 immunoreactivity, tissue was first 

washed in six 5-min PBS exchanges and pretreated with 0.3% hydrogen peroxide in PBS for 20 

min (RT). Following a set of three 10-min washes, the tissue was blocked in NDS for 2 hr (RT) 

and then incubated in anti-rabbit MCHR1 antibody (1:3,000; Thermo Fisher Scientific; RRID: 

AB_2541682) prepared in NDS for 48 hr (4°C). The tissue was rinsed with six 5-min PBS 

exchanges and incubated with a biotinylated goat anti-rabbit antibody (1:5,000) in NDS without 

azide for 1 hr (RT). Following three 10-minute washes, the tissue was incubated in avidin biotin 

horseradish peroxidase in PBT for 30 min (RT). The tissue was washed three times (10 min each, 

RT) and underwent tyramine signal amplification. After washing the tissue three times with PBS 

(10 min each, RT), it was incubated with a Cy3-conjugated streptavidin antibody (1:200, RT; 

Jackson ImmunoResearch Laboratories; RRID: AB_2337244).  

The tissue was then washed three times with PBS (10 min each) and incubated with an 

anti-rabbit NeuN antibody (1:2,000; MilliporeSigma; RRID: AB_2571567) in NDS overnight 

(RT). The following day, the tissue was washed in six 5-min PBS exchanges and incubated with 

a donkey anti-rabbit Alexa Fluor 488-conjugate (1:500; Thermo Fisher Scientific; RRID: 

AB_2535792) and NeuroTrace 435/455 (1:50) in NDS without azide. Finally, the tissue was 

washed for 2 hr in PBS (RT) prior to mounting on SuperFrost Plus slides and coverslipped with 

ProLong Diamond Antifade Mountant. This MCHR1 antibody has been previously validated for 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

34 

 

ciliary expression (Diniz et al., 2020) and we have determined that there is no MCHR1 staining 

in the LS of male or female MCHR1-knockout mice (data not shown).  

Triple-label immunohistochemistry

.

 To determine the proximity of MCHR1- and MCH-

immunolabeling at NeuN-labeled cells, brain tissues were prepared using procedures for 

optimized MCHR1 labeling. Tissues were treated to label MCHR1 immunoreactivity, as 

described above, followed by tyramine signal amplification and treatment with an Alexa Fluor 

647-conjugated streptavidin antibody (1:200; Jackson ImmunoResearch Laboratories; RRID: 

AB_ 2341101). After rinsing with three PBS exchanges (10 min each), they were immediately 

incubated anti-rabbit MCH (1:2,000; RRID: AB_2314774) and anti-mouse NeuN (1:1,000; 

HB6429, Hello Bio, Princeton, NJ) in NDS overnight (RT). After the tissues were washed in six 

5-min PBS exchanges, they were incubated with an NDS cocktail comprising donkey anti-rabbit 

Alexa Fluor 568-conjugate (1:1,000; Thermo Fisher Scientific; RRID: AB_2534017) and donkey 

anti-mouse Alexa Fluor 488-conjugate (1:500; Thermo Fisher Scientific; RRID: AB_141607) for 

2 hr at RT, rinsed with PBS, then mounted onto SuperFrost Plus slides and coverslipped with 

ProLong Diamond Antifade Mountant.    

In situ hybridization.

 We optimized 

in situ 

hybridization procedures using a RNAscope 

Multiplex Fluorescent Reagent Kit v2 (Advanced Cell Diagnostics (ACD), Newark, CA) and 

manufacturer instructions for fixed-frozen mouse brain tissue (Document 323100-USM, ACD). 

To promote tissue adherence, slides w

ere removed from storage at −80°C, baked at 37°C for 45 

min, dehydrated in an ethanol gradient (50%, 70%, 100%; 5 min each), and then air-dried for 15 

min (RT) immediately prior to the start of tissue treatments.  

Tissue was rehydrated in PBS for 5 min (RT), pretreated with 5

8 drops of hydrogen 

peroxide (323110, ACD) for 10 min (RT), washed twice in distilled water for 1 min each, and 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

35 

 

submerged in 100% ethanol for 15 min (RT) to promote tissue adherence. The slides were then 

placed inside a steamer (Oster, Boca Raton, FL) using a coplin jar filled with preheated distilled 

water for 10 s (99°C) before transferring into the Target Retrieval Reagent (322000, ACD) for 5 

min (99°C). Following two 15 s washes in distilled water (RT), the slides were dehydrated in 

100% ethanol for 3 min, and then washed in three PBS exchanges (1 min each). A hydrophobic 

barrier was then drawn around each slide with an ImmEdge pen (Vector Laboratories), and the 

slides were dried overnight (RT). The following day, the slides were washed twice in PBS for 2 

min and then placed in 10% formalin for 30 min (RT). Slides were then washed twice in PBS for 

2 min and the tissue was treated with 5

8 drops of Protease Plus (322331, ACD) and incubated 

in a HybEZ oven (310010, ACD) at 40°C for 30 min. After protease treatment, the slides were 

washed with two exchanges of distilled water for 1 min each. 

RNAscope probes for 

Mm-Ppib 

(313911, ACD), 

Bacillus

 

dapB 

(320871, ACD), and 

Mm-Mchr1

 (317491, ACD) were designated for positive control, negative control, or 

experimental targeting, respectively, and were applied directly to the slides to cover the tissue. 

The tissue was hybridized for 2 hr at 40°C in the HybEZ oven, then washed with three fresh 

exchanges (2 min each; RT) of 1

 Wash Buffer (310091, ACD).

 

The hybridization signal was 

amplified by alternating incubations in AMP-1 (40°C, 30 min; 323110, ACD), AMP-2 (40°C, 30 

min; 323110, ACD), and AMP-3 (40°C, 15 min; 323110, ACD) with two Wash Buffer washes 

(2 min each).  

Mchr1

 hybridization was then labeled with Cyanine 3 (Cy3) by treating tissue with HRP-

C1 (40°C, 15 min; 323110, ACD), washing the tissue twice in Wash Buffer for 2 min (RT), and 

incubating the tissue with TSA plus Cy3 (1:750; NEL44E001KT, PerkinElmer, Waltham, MA) 

in TSA Buffer (322809, ACD) for 30 min in the 40°C oven. Slides were then washed twice in 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

36 

 

Wash Buffer (2 min each, RT) and incubated with HRP Blocker (323110, ACD) in the oven at 

40°C for 15 min. 

Where applicable, the tissue underwent immunohistochemical staining to label MCH-

immunoreactive fibers, as adapted from Mickelsen and colleagues (2019). The tissue was 

blocked with NDS without sodium azide and applied to each slide for 30 min (RT). After 

blocking, the tissue was incubated with an anti-rabbit MCH antibody (1:2,000; RRID: 

AB_2314774) for 1 hr (RT). The tissue was thoroughly rinsed with two exchanges in PBS (2 

min each) then incubated with a donkey anti-rabbit Alexa Fluor 647 conjugate (1:500; 

ThermoFisher Scientific; RRID: AB_2536183) for 30 min (RT).  

After washing the slides twice in Wash Buffer for 2 min (RT), 4

–6 drops of 4′,6

-diamidino-2-

phenylindole (DAPI; 323110, ACD) were applied for 30 s, and the slides were coverslipped 

using ProLong Diamond Antifade Mountant. Slides were dried in the dark overnight at RT and 

then stored at −20°C. 

 

2.4.2   Microscopy 

All images were acquired using a Nikon Ti2-E inverted microscope (Nikon Instruments Inc., 

Mississauga, Canada) and processed using NIS-Elements Imaging Software (Nikon).  

Confocal imaging.

 Tiled confocal images were acquired with a Nikon C2 confocal 

system using 405-nm, 488-nm, 561-nm, and 640-nm excitation lasers to visualize DAPI or 

NeuroTrace, Alexa Fluor 488, Cy3, and Alexa Fluor 647 fluorophores, respectively. Full brain 

overview images of DAPI-labeled nuclei from 

Mchr1

 stained slices were acquired using a 4

 

objective (0.20 numerical aperture). Higher magnification images of the LS used for analysis 

were imaged for DAPI/NeuroTrace, Alexa Fluor 488, Cy3, and/or Alexa Fluor 647 signals with 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

37 

 

a Plan Apochromat 10

 objective (0.45 numerical aperture) or 20

 objective (0.75 numerical 

aperture) at a single image plane and stitched with NIS-Elements Imaging Software. Where 

applicable, Z-

stacks of 1 μm optical slices were acquired with a Plan Apochromat 40

 objective 

(0.95 numerical aperture) or 60

 objective (1.40 numerical aperture) and displayed as orthogonal 

XY

XZ

, and 

YZ

 projections or projected by their maximum intensity values (NIS-Elements 

Imaging Software).  

In situ hybridization signals.

 

The negative control slices were imaged at a single image 

plane using the Plan Apochromat 10

 objective and the 561-nm laser. The positive control 

Ppib

 

hybridization signals were imaged to assess tissue and RNA quality. Images of all the sections 

containing the LS for both negative control and experimental probe series were acquired using 

the same settings to ensure that any differences observed between sections were not due to a 

difference in magnification, scan area, laser power, or gain. Tiled images of the LS from each 

probe section were then acquired at 10

 magnification using the 405-nm, and 561-nm lasers to 

image DAPI- and 

Mchr1

-labeling. Images were saved and exported such that the different 

channels could be toggled on and off to allow visualization of individual channels.  

Brightfield imaging.

 

Large field-of-view images of Nissl-stained tissue were viewed and 

imaged using a CF160 Plan Apochromat 10

 objective lens and acquired with a DS-Ri2 colour 

camera (Nikon). Shading correction was applied during image acquisition to adjust for 

illumination inconsistences at the edge of each image tile. The tiled images were stitched with 

NIS-Elements Imaging Software.  

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

38 

 

2.4.3   Image analysis 

Plane-of-section analysis. 

To assess the neuroanatomical distribution of MCH-ir fibers and 

MCHR1 protein, we used unique cytoarchitectural features seen in tiled, confocal 

photomicrographs of NeuroTrace-staining to parcellate and draw boundaries corresponding to 

brain regions defined in the 

Allen Reference Atlas

 (

ARA

; Dong, 2008; 

Supporting figure 1A

i

,

 

C

i

).  

We used tiled, brightfield photomicrographs of Nissl-staining to parcellate tissue used to 

analyse 

Mchr1 

hybridization signals (

Supporting figure 1B

i

). Following confocal imaging, 

coverslipped tissue that served as the negative control was soaked in PBS overnight (RT) until 

the coverslip slid off. The exposed brain tissue was then treated for Nissl staining, as previously 

described (Negishi 

et al.

, 2020; Bono 

et al.

, 2022). Where necessary, DAPI-labeled overview 

images were aligned with parcellated images of the Nissl-stained tissue. Confocal images of 

Mchr1

 mRNA hybridization signal in the LS were imported into Adobe Illustrator 2021 (Adobe 

Inc., San Jose, CA) and aligned to DAPI-labeled overview images. White matter, ventricles, 

blood vessels, and other easily identifiable landmarks were used to ensure slices were properly 

aligned. 

All parcellations were drawn in Illustrator using an Intuos graphic tablet (Wacom, Kazo, 

Japan) with reference to nomenclature and atlas levels provided by the 

ARA

Fiber density.

 Confocal images of MCH immunoreactivity in the LS were visualized by 

Alexa Fluor 647 emission. MCH-ir axon fibers and varicosities were traced in a new layer within 

Illustrator using an Intuos graphic tablet (

Supporting figure 1A

ii

). Fiber tracing was restricted 

to the LS only and then mapped to 

ARA 

brain templates (see 

Mapping 

description below). For 

each atlas level, another layer was added to the Illustrator file so that a filled shape can be drawn 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

39 

 

to encompass each LS subregion and the entire LS area. A clipping mask of this filled shape was 

then applied to isolate, as separate image files, the filled shape of the total LS area, filled shape 

of each subregion, mapped fiber tracing in the full LS, and mapped fiber tracing in each 

subregion. The images were then analysed in MATLAB (MathWorks, Natick, MA) to determine 

the total number of pixels encompassing the subregions or entire LS area (

pixels

total

) and the 

number of pixels occupied by the fiber tracings (

pixels

fibers

). As the LS is a heterogenous three-

dimensional structure, we analysed fiber density at all LS levels (Risold and Swanson, 1997a; 

Risold and Swanson, 1997b). The density of MCH-ir fibers at each 

ARA

 level (

D

) was expressed 

on a ratio scale as: 

D = 100 

(

pixels

fibers

/pixels

total

) to capture nuanced changes in fiber density 

throughout the rostrocaudal axis of each LS subregion.   

Quantification of Mchr1 mRNA expression.

 

Representative images from negative 

control tissue, corresponding to each probe slice, were adjusted using lookup table values (LUTs; 

NIS Elements) until the image appeared black to eliminate background fluorescence from any 

dapB

 hybridization. This set of LUTs were averaged and applied to images of 

Mchr1

 

hybridization signals to subtract background fluorescence resulting from non-specific binding. 

 

Mchr1 

hybridization was visualized by Cy3 fluorescence and appeared as punctate red 

dots, which were far fewer after background correction. Only dots colocalizing to a DAPI-

stained nuclei were included in our analyses (

Supporting figure 1B

ii

). A DAPI-stained nucleus 

colocalizing with clusters of 3+ red dots were labeled as a 

Mchr1

-expressing neuron and marked 

by a red-filled circle (

Supporting figure 1B

ii

). In the event that mRNA dots appeared between 

two DAPI-labeled nuclei, only one cell would be reported, thus it is possible that we are 

underestimating the number of 

Mchr1 

cells available in the LS. We counted the number of red-

filled circles within the LS of each available brain slice. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

40 

 

Quantification of MCHR1 protein expression. 

Neuronal MCHR1 expression was 

counted from confocal images of NeuroTrace-labelled cells, ciliary MCHR1, and NeuN 

immunoreactivity visualized by NeuroTrace 435/455, Cy3, and Alexa Fluor 488 fluorescence, 

respectively. An orange-filled circle (Illustrator) was placed over NeuroTrace and NeuN-ir 

neurons marked by an MCHR1-ir primary cilium (

Supporting figure 1C

ii

). The number of 

circles were quantified within the LS of each available brain slice.

 

Mapping.

 

The fiber tracings and filled circle labels were kept in individual layers of the 

Adobe Illustrator file so that each layer could be easily separated and mapped onto the 

corresponding level of the 

ARA

 template (Dong, 2008). The collection of fiber and circle labels 

was copied, resized, and adjusted so that the representation of the experimental LS fit the shape 

of the LS shown in the atlas reference template. In this way, neurons were mapped to their 

correct position relative to the unique neuroanatomical boundaries specific to the animal, despite 

physical differences unique to the animal (such as size and shape of brain regions). Individual 

subregions of the LS were mapped one-by-one to maintain accuracy in relative position and 

distribution of fibers and neurons (

Supporting figure 1A

iii

B

iii

C

iii

).  

Appositions

.

 Direct physical contact between fiber and soma or cilia was assessed using 

consecutive confocal Z-stack slices. Fiber contacts were referred to as appositions to the 

membrane where no visible space appeared between the fiber and cell membrane along the 

orthogonal 

XZ

 and 

YZ

 projections (Krimer 

et al.

, 1997; Lambe 

et al.

, 2000; Bouyer & Simerly, 

2013). Contacts were determined at a physical zoom magnification of 2400

 or greater, which 

permitted the detection of at least 0.4 μm gaps.

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

41 

 

2.4.4 Electrophysiology 

Slice preparation

Mice were anesthetized with an injection of chloral hydrate (700 mg/kg, i.p.) 

and transcardially perfused with a carbogenated (95% O

2

, 5% CO

2

), ice cold artificial 

cerebrospinal fluid (ACSF) solution containing (in mM) 118 NaCl, 3 KCl, 1.3 MgSO

4

, 1.4 

NaH

2

PO

4

, 5 MgCl

2

, 10 glucose, 26 NaHCO

3

, 0.5 CaCl

(300 mOsm/L). The brain was removed 

from the skull and sliced at 250 

m using a vibrating microtome (VT1000s, Leica Biosystems, 

Buffalo Grove, IL) in cold, carbogenated ACSF. Slices containing the LS were transferred to 

glucose-based ASCF containing (in mM) 124 NaCl, 3 KCl, 1.3 MgSO

4

, 1.4 NaH

2

PO

4

, 10 

glucose, 26 NaHCO

3

, 2.5 CaCl

2

 (300 mOsm/L) for 10 min (37

C) and then allowed to recover at 

RT for at least one hour prior to slice recording.  

Slice recording.

 

Slices containing the LS were bisected and transferred to the recording 

chamber where they were continuously perfused with carbogenated, glucose-based ACSF 

(31

C). Slice recordings were performed on three separate electrophysiology rigs. Cells were 

visualized with infrared differential interference contrast microscopy at 40

 magnification on 

either an Examiner.A1 microscope (Zeiss, Oberkochen, Germany) equipped with an AxioCam 

camera (Zeiss) and Axiovision software (Zeiss), or with an Eclipse FN1 microscope (Nikon) 

equipped with a pco.panda 4.2 camera (Excelitas PCO GmbH, Kelheim, Germany) and NIS-

Elements Imaging software (Nikon). 

Whole-cell patch-clamp recordings were performed using borosilicate glass pipettes (7

M

) backfilled with a potassium-based internal pipette solution containing (in mM) 120 K-

gluconate, 10 KCl, 10 HEPES, 1 MgCl

2

, 1 EGTA, 4 MgATP, 0.5 NaGTP, 10 phosphocreatine 

(290 mOsm/L, pH 7.24) to assess membrane properties, ionic conductances, and glutamatergic 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

42 

 

events. Internal pipette solution with an increased chloride concentration contained (in mM) 109 

K-gluconate, 22 KCl, 10 HEPES, 1 MgCl

2

, 1 EGTA, 0.03 CaCl

2

, 4 MgATP, 0.5 NaGTP, 9 

phosphocreatine (290 mOsm/L, pH 7.24). A cesium-based internal pipette solution used to 

record GABAergic events contained (in mM) 128 CsMS, 11 KCl, 10 HEPES, 0.1 CaCl

2

, 1 

EGTA, 4 MgATP, 0.5 NaGTP (290 mOsm/L, pH 7.24). For recordings measuring membrane 

properties, 0.4% biocytin (Cayman Chemical, Ann Arbor, MI) was added to the internal pipette 

solution to allow for post-hoc immunohistochemical labeling and visualization of recorded cells. 

Recordings of electrical activity were generated using a MultiClamp 700B amplifier (Molecular 

Devices, San Jose, CA) and digitized by a Digidata 1440A (Molecular Devices) or using an 

Axopatch 200B amplifier (Molecular Devices) and digitized by a Digidata 1322A (Molecular 

Devices). All traces were acquired using pClamp 10.3 software (Molecular Devices) and filtered 

at 1 kHz.  

Drug treatment.

 Following a baseline period of at least 5 min, MCH (3 

M; H-1482; 

Bachem, Torrance, CA) was bath applied into the recording chamber for approximately 5 min 

followed by a washout period in ACSF. Where applicable, tetrodotoxin (TTX; 500 nM; T-550, 

Alomone labs, Jerusalem, Israel), TC-MCH 7c (10 

M; 4365, Tocris, Toronto, Ontario, Canada), 

and bicuculline (30 

M; 14343, MilliporeSigma) were applied to the slice during the baseline 

period approximately 10 min prior to MCH application and maintained over the washout period. 

Calphostin C (100 nM; HB0160, Hello Bio Inc., Princeton, NJ) prepared and maintained in the 

dark until it was illuminated by a bright light within the slice recording chamber was applied to 

the slice for 20

30 min prior to MCH application. Antagonists were only added to cells that were 

hyperpolarized by a puff of MCH. All drugs were prepared from stock solution then dissolved 

into ACSF immediately prior to application.  

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

43 

 

Puff application.

 In experiments elucidating the membrane or intracellular mechanisms 

underlying the effects of MCH, we first delivered a short puff of MCH to a patched cell to 

identify those cells that responded with a reversible membrane hyperpolarization. To deliver the 

MCH puff, a second borosilicate glass “puff” pipette was filled with 3 

M MCH solution and 

lowered into the slice within 30

40 

m from the patched cell. A gradual positive pressure was 

manually applied to the puff pipette for 5

10 seconds until the MCH solution reached the 

patched cell.  

Biocytin immunohistochemistry.

 Some brain slices used for electrophysiology 

recordings were post-fixed with 10% formalin to use for post-hoc immunohistochemical 

staining. The slices containing the biocytin-filled cells were rinsed in PBS (six 5-min washes), 

blocked in NDS (2 hours; RT), incubated with a streptavidin-conjugated Cy3 antibody (1:500) 

prepared in NDS (2 hours; RT), and then washed in PBS for 10 min. The slices were then 

washed with two more exchanges of PBS containing DAPI (1:2,000; Thermo Fisher Scientific) 

for 10 min. Brain slices were then mounted to Superfrost Plus microscope slides and 

coverslipped with ProLong Diamond Antifade Mountant. 

2.4.5   Experimental design and statistical analyses  

Anatomical studies.

 

Male and female mice wildtype mice (8

10 weeks) were used in a between-

subject design to assess the distribution of MCH-ir fibers, 

Mchr1

 mRNA, and MCHR1 

immunoreactivity. Comparisons between LS subregions or across LS levels were determined by 

two-way mixed model ANOVA with Tukey post-hoc testing, as not all LS levels can be captured 

in every brain sample.  

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

44 

 

Slice recording

. Acute brain slices were prepared from male and female wildtype mice 

(38 male, 30 female) aged 5

23 weeks. Cells were recorded from two to three slices containing 

the LS and corresponding to Bregma 1.145

0.345 mm. Data sets included 1

4 cells per mouse.  

Resting membrane potential (RMP).

 Only neurons that exhibited a stable membrane 

potential (varied <5 mV) for 5 minutes prior to drug application were included in our data 

analyses. All voltages were corrected for a +15 mV or +14 mV liquid junction potential when 

using the internal pipette solution containing 12 mM or 24 mM chloride, respectively. For bath 

applications, RMP was sampled every 1 s using Clampfit 10.7 (Molecular Devices) and binned 

into 30 s increments. Control value was the mean RMP averaged over 1 min immediately prior 

to MCH application. The change in RMP (

 RMP) was determined at the peak effect of MCH, 

which was within 4

8 min of MCH application and following washout 5

10 min later. In puff 

experiments, RMP was sampled every 500 ms and binned into 2-second increments, the 

 RMP 

elicited by MCH was sampled 10

25 s after the puff. Within-group designs comparing control, 

MCH, and washout conditions were analysed using a repeated measure one-way ANOVA with 

Tukey post-hoc testing. Comparisons of 

 RMP over time between two drug treatment 

conditions were analysed using a repeated measure two-way ANOVA. Comparisons of 

 RMP 

after or at peak effect of drug treatment were compared using a one-way ANOVA with Tukey 

post-hoc testing.  

I

V curve.

 Ionic conductance was measured in voltage clamp from a holding potential 

(V

h

) of −75 mV. Descending 10 mV voltage steps (250 ms) were applied from −55 mV to −125 

mV. The mean reversal potential (V

rev

) was averaged based on the V

rev

 for each cell, which was 

determined as the 

x

-intercept calculated from a line equation where the slope is calculated from 

the −55 mV and −65 mV steps or from current values at two adjacent voltage steps where the 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

45 

 

current changes from a negative to a positive value, where applicable. The V

rev

 was compared to 

the theoretical equilibrium potential of the chloride ion (E

Cl

) using a one-sample 

t

 test. Between-

group differences in net currents evoked at each voltage step following MCH application in the 

absence or presence of bicuculline were compared using repeated measures two-way ANOVA 

with Bonferroni post-hoc comparison. The net current evoked at the 

105 mV voltage step was 

compared using a one-way ANOVA with Tukey post-hoc comparison.  

Synaptic activity. 

Spontaneous (sIPSC) or miniature (mIPSC) inhibitory postsynaptic 

current events were recorded at V

h

 = 

15 mV while excitatory post synaptic currents (sEPSC, 

mEPSC) were recorded at V

h

 = 

75 mV. The IPSC and EPSC frequency were analysed using 

MiniAnalysis (Synaptosoft) and binned into 30-second increments. The control value was taken 

as the mean of a 1 min sample between 0 and 4.5 min prior to MCH application. The percent 

change in frequency and amplitude were determined at the peak effect of MCH between 2 and 

9.5 min after the onset of MCH application. The washout was taken between 10 and 19 min after 

MCH application. Statistical significance was determined using a repeated measure one-way 

ANOVA with Tukey post-hoc testing. 

 

We generated cumulative probability plots by pooling the amplitude and interevent 

intervals from 200 IPSC events or 50 EPSC events from each cell from baseline, MCH, and 

washout recording periods. Differences in the distribution of IPSC or EPSC amplitudes or 

interevent intervals in cumulative probability plots were analysed using the Kolmogorov-

Smirnov 

t

 test. 

Graphs and illustrations

. All data graphs were generated using Prism 9 (GraphPad 

Software, San Diego, CA). Results were considered statistically significant at 

p

 < 0.05. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

46 

 

Representative sample traces data were exported from Clampfit and plotted in Origin 2018 

(OriginLab Corporation, Northampton, MA). Manuscript figures were assembled in Illustrator. 

2.5  

Results 

In order to identify potential sites of MCH action within the LS, we quantified the relative 

expression of MCH-ir fibers (

Figure 1A

), 

Mchr1

 mRNA (

Figure 1B

), and MCHR1 receptors 

(

Figure 1C

) in each subregion and level of the LS and then mapped their distribution throughout 

the rostrocaudal axis of the LS that spans 2.125 mm between 

ARA

 level (L) 36 and L57. 

2.5.1   Distribution of MCH-ir fibers throughout the LS  

To maximize the detection of MCH-ir fibers, we performed our immunohistochemical stains 

using tyramide signal amplification. We then traced these fiber projections so that they can be 

mapped onto 

ARA

 templates with reference to Nissl-based parcellations and systematically 

examine the distribution of MCH-ir fibers throughout the LS. The density and pattern of MCH-ir 

fiber expression was comparable between males and females (

Supporting figure 2

), so their 

datasets were combined to assess the overall MCH-ir fiber density across the LS.   

The LS includes the rostral LS (LSr), caudal LS (LSc), and ventral LS (LSv). The LSr 

comprised the largest cytoarchitectural subdivision of the LS, and majority of MCH-ir fibers in 

the LS were found in the LSr (F(2, 12) = 10.33, 

p

 = 0.0025). Notably, MCH-ir fiber density was 

more abundant in the ventral than dorsal aspects of the LSr (

Figure 1A

i

iii

). Near the peak 

ARA 

level of MCH-ir expression, there was a distinctive pattern of MCH-ir fibers that were more 

concentrated at the midline or along the medial LSr border adjacent to the medial septal nucleus, 

along the lateral LSr border adjacent to the lateral ventricle, and along the ventral LSr border 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

47 

 

abutting the nucleus accumbens, lateral preoptic area, or bed nuclei of the stria terminalis 

(

Figure 1A

iv

; see 

Supporting figure 2

 for MCH-ir fiber maps at all 

ARA

 levels of the LS).  

MCH-ir fiber density differed throughout the anteroposterior axis of the LS (F(16, 99) = 

4.46, p < 0.0001), and MCH-ir fiber density in the LSr gradually increased by nearly two-fold at 

its peak between L45

L49 and then diminished posteriorly (

Figure 1A

v

). The cytoarchitectural 

boundary of the LSc is dorsal to the LSr, begins around L44, and then persists throughout the LS. 

The LSc is a small LS subregion and comprised relatively few dispersed MCH-ir fibers within 

the overall LS (

Figure 1A

v

). The LSv emerged posteriorly in the LS starting at L52, and the LSv 

contained a moderate and evenly distributed MCH-ir fiber density (

Figure 1A

v

).  

2.5.2   Distribution of 

Mchr1

-expressing LS cells 

To determine if the LS expressed receptors for MCH, we used RNAscope to label 

Mchr1

 mRNA 

hybridization in the LS; positive staining for 

Mchr1

 mRNA appeared as punctate dots. We 

observed cells that contained 1

2 dots, and while even low amounts of mRNA may be translated 

to protein (Greer et al., 2016; Lipo et al., 2022), we only considered cells with 3+ dots to provide 

a conservative estimation of 

Mchr1

-positive cells (

Figure 1B

). Similar to the distribution of 

MCH-ir fibers, 

Mchr1 

hybridization was more prominent in the LSr (F(2, 72) = 116.1, p < 

0.0001), where 

Mchr1 

cells were most prevalent in the ventral than dorsal LSr (

Figure 1B

i

iii

), 

where they tend to be along the lateral LSr borders (

Figure 1B

iv

; see 

Supporting figure 3

 for 

representative maps of 

Mchr1 

hybridization at all 

ARA

 levels of the LS).   

The distribution of 

Mchr1

-expressing cells was similar between males and females 

(

Supporting figure 3

). The number of 

Mchr1

 cells differed rostrocaudally within the LS (F(16, 

72) = 3.47, 

p

 = 0.0001) and peaked at L49 (

Figure 1B

v

). Of the identified 

Mchr1

-expressing 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

48 

 

cells, 89% were found in the LSr and only 10% and 1% were located in the LSc and LSv, 

respectively. In the posterior levels at L52 and L53, there were few 

Mchr1

 cells in the LSr but 

there was an increasing proportion of 

Mchr1

 cells dorsally in the LSc.  

2.5.3   Distribution of MCHR1-expressing LS cells 

To determine if 

Mchr1

 transcripts were translated to protein, we performed an 

immunohistochemical stain to label MCHR1 immunoreactivity. As MCHR1 is concentrated on 

the primary cilium of neurons (Diniz et al., 2020), we determined its colocalization to a 

NeuroTrace and/or NeuN-ir soma (

Figure 1C

). The vast majority (93%) of MCHR1 cells were 

in the LSr (F(2, 69) = 84.95, p < 0.001), and the pattern of MCHR1 immunoreactivity was 

similar to 

Mchr1

 mRNA hybridization. MCHR1-expressing cells clustered toward the lateral 

border and ventral half of the LSr, while the medial LSr bordering the medial septum had few 

MCHR1 cells at all levels of the LS (

Figure 1C

i

iv

; see 

Supporting figure 4

 for representative 

maps of MCHR1-expressing cells at all 

ARA

 levels of the LS).  

MCHR1-expressing cells were differentially distributed throughout the anteroposterior 

axis of the LS (F(16, 69) = 3.65, p < 0.0001) and peaked between L48 and L49, where there 

were 5-fold more MCHR1 cells than in the anterior or posterior LS (

Figure 1C

v

). About 5% of 

MCHR1 cells were found in the LSc and were distributed across several 

ARA

 levels. The LSv 

comprised ~2% of MCHR1 cells, which emerged posteriorly and were clustered at L55 (

Figure 

1C

v

). Interestingly, while 99.9% MCHR1-ir cilia in LSr and LSc colocalized to a NeuN-labeled 

soma, about 56% of MCHR1-ir cilia in the LSv did not colocalize to NeuN, though they were 

associated with a NeuroTrace-labeled cell.  

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

49 

 

 

Figure 1. Relative expression of MCH-immunoreactive fibers, 

Mchr1

 mRNA, and MCHR1 

protein throughout the LS. 

Representative confocal photomicrographs of MCH-

immunoreactive (MCH-ir) fibers (arrowheads) amid NeuroTrace-labeled soma (

Ai

) in the dorsal 

(

Aii

) and ventral regions of the LS (

Aiii

). Coronal map of traced MCH-ir fibers in the LS (

Aiv

) at 

a representative 

Allen Reference Atlas 

level (

ARA

; Dong, 2008). Fiber density was expressed as 

the percent area covered by MCH-ir fibers at each 

ARA

 level in the rostral LS (LSr), caudal LS 

(LSc), and ventral LS (LSv; 

Av

). Representative confocal photomicrographs of 

Mchr1 

mRNA 

hybridization amid DAPI-labeled nuclei (

Bi

) showing 1

–2 “dots” (open arrowhead; not included 

in subsequent analyses) or 3+ dots (white arrowhead) in the dorsal (

Bii

) and ventral regions of 

the LS (

Biii

). Only dots that surrounded a DAPI-labeled nucleus were included in our analyses. 

Coronal map of 

Mchr1

 hybridization distributed within the LS at a representative 

ARA 

level 

(

Biv

). Percent of 

Mchr1 

cells (comprising 3+ dots) at the LSr, LSc, and LSv of each 

ARA 

level 

was relative to the total number of 

Mchr1 

cells per brain (

Bv

). Representative confocal 

photomicrographs of MCHR1 immunoreactivity on the primary cilium (arrowhead) of NeuN-
immunoreactive neurons (

Ci

) in the dorsal (

Cii

) and ventral regions of the LS (

Ciii

). Coronal 

map of MCHR1-expressing cells at a representative 

ARA

 level (

Civ

). Percent of total MCHR1

 

cells in the LSr, LSc, and LSv at each 

ARA

 level (

Cv

). Only

 ARA

 levels captured by our dataset 

were included. Scale bar: 200 

μm (

Ai

,

 Bi

,

 Ci

), 25 

μm (

Aii

Aiii

), 10 μm (

Bii

Biii

), 20 

μm (

C

ii

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

50 

 

C

iii

). Significance (

p

 < 0.05) was determined with a two-way mixed-effect model ANOVA with 

Tukey post-hoc testing: ** 

p

 < 0.01, **** 

p

 <0.0001

ACB, nucleus accumbens; cc, corpus 

callosum; CP, caudoputamen; LSc, lateral septal nucleus, caudal part; LSr, lateral septal nucleus, 
rostral part; MS, medial septal nucleus; SH, septohippocampal nucleus; VL, lateral ventricle. 

 

2.5.4   Proximity of MCH-ir fibers at MCHR1-expressing LS cells 

MCH is known to reach its receptor and target site by volume transmission (Noble 

et al.

, 2018). 

However, as MCH fibers and MCHR1 are featured in similar LS regions dorsoventrally and 

rostrocaudally (

Figure 1

), we also assessed the proximity between MCH-ir fibers and 

Mchr1

 

mRNA or MCHR1 protein expression. MCH-ir fibers were present around 

Mchr1

-expressing 

cells in the ventral LSr (

Figure 2A

) and in some cases appeared to be in close contact with an 

Mchr1

-expressing cell (

Figure 2B

). However, since 

Mchr1 

hybridization was localized to DAPI-

labeled nuclei, it was not possible to assess if MCH-ir fibers formed direct appositions with a 

Mchr1

 cell. To determine if MCH fibers may come in direct contact with MCHR1-expressing LS 

cells, we performed a stain for MCHR1 protein, MCH-ir fibers, and the neuronal marker NeuN 

to mark the cell body and examined MCH fiber appositions on the soma or cilia of MCHR1-

expressing cells. The majority of MCHR1-expressing LS cells (111 of 123) were not contacted 

by MCH-ir fibers either at their cell bodies or cilia (

Figure 2C

). Most MCHR1 cells were not 

immediately adjacent to visible MCH-ir fibers, and some MCH-ir varicosities came within 

0.4 

μm of MCHR1

-labeled cilia or their affiliated cell body without making direct physical 

contact (

Figure 2D

). Interestingly, MCH-ir fibers directly contacted about 10% of MCHR1 LS 

cells examined, and these appositions may occur at the NeuN-labeled cell body (

Figure 2E

) or 

MCHR1-ir cilium (

Figure 2F

). These findings suggested that MCH is preferentially transmitted 

through diffusion from local MCH fibers in the LS, but MCH fibers may also be in direct contact 

with LS cells for localized actions. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

51 

 

 

Figure 2. Proximity of MCH-immunoreactive fibers to MCHR1-expressing LS cells.

 

Representative merged-channel confocal photomicrographs from the lateral and ventral LSr 
border (

inset

,

 

dashed outlined area) of 

Mchr1

 mRNA on DAPI stained nuclei (white arrow) in 

relation to MCH-ir fibers (

A

) in close proximity to 

Mchr1

-expressing cells (

B

). Representative 

merged-channel confocal photomicrographs from the lateral and ventral LSr border (

inset

,

 

dashed outlined area) of MCHR1-ir cilia on NeuN-ir neurons in relation to MCH-ir fibers (

C

), 

which may be adjacent but relatively distant (asterisk) from MCHR1-ir LS cells. High 
magnification confocal photomicrographs with orthogonal projections in the 

XY

-plane of MCH-

ir varicosities in 

C

 that are closely associated but do not make physical contact (

D

, open 

arrowhead) or that form appositions (filled arrowhead) at the NeuN-ir soma (

E

) or associated 

MCHR1-ir cilia (

F

). Appositions were observed when no visible space was discerned between 

the MCH-ir varicosity and NeuN-ir soma or MCHR1-ir cilium in both the 

XZ

- and 

YZ

-plane at 

the same optical section (yellow line). Scale bars: 10 μm (

A

C

); 100 μm (

inset

A

,

 C

); 

X, Y

Z

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

52 

 

axis 5 μm each (

B

D

). ACB, nucleus accumbens; cc, corpus callosum; CP, caudoputamen; LSc, 

lateral septal nucleus, caudal part; LSr, lateral septal nucleus, rostral part; LSv, lateral septal 
nucleus, ventral part; MS, medial septal nucleus; VL, lateral ventricle. 

 

2.5.5   MCH inhibited LS cells 

As local diffusion may be the primary mode of MCH transmission within the LS, we 

hypothesized that substantive spatial overlap between the distribution of MCH-ir fibers and 

MCHR1 would define putative hotspots for MCH action. We found that the spatial overlap 

between the expression of MCH-ir fibers, 

Mchr1

 mRNA, and MCHR1 protein in the LS was 

most prominent toward the lateral and ventral borders of the LSr (

Figure 3A

), which formed our 

focus region for identifying MCH-responsive LS cells and defining the mechanisms of MCH 

action.  

We prepared acute brain slices containing the LS and performed whole-cell patch-clamp 

recordings from cells along the ventrolateral border of the LSr (

Figure 3B

). Bath application of 

MCH (3 µM) significantly hyperpolarized a subset of MCH-sensitive LS cells, which were 

distinguished from MCH-insensitive cells where MCH application did not affect the RMP (F(1, 

19) = 11.91; 

p

 = 0.003; 

Figure 3C

i

C

ii

). This MCH-mediated hyperpolarization was observed 

in about half of LSr neurons recorded from both male (7/12 cells) and female (5/9 cells) mice 

and reversibly hyperpolarized the RMP 

by −6.1 ± 1.1 mV (n = 12; F(2, 22) = 13.38, 

p

 = 0.002; 

Figure 3C

iii

). We did not detect any differences in the magnitude of hyperpolarization between 

cells from male (−6.3 ± 1.5 mV, n = 7) or female mice (−5.6 ± 2.0, n = 5; 

t

(10) = 0.29, 

p

 = 0.78), 

thus data from both male and female mice were combined.   

To determine if MCH acts directly on LS cells, we pretreated the slice with TTX (500 

nM) to block action potential-dependent activity. Subsequent co-application of MCH in the 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

53 

 

presence of TTX also hyperpolarized LS cells by −7.7 ± 1.5 mV (n = 7; F(2, 12) = 16.69, 

p

 = 

0.002; 

Figure 3D

), which indicated that MCH directly inhibited LS cells. 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

54 

 

Figure 3. MCH directly hyperpolarized LS cells. 

Overlaid maps of MCH-immunoreactive 

(MCH-ir) fibers (blue) with low-

Mchr1

 (pink circles; 

Ai

), high-

Mchr1 

(red circles; 

Ai

), and 

MCHR1-ir cells (purple circles; 

Aii

) at 

Allen Reference Atlas

 Level 47 (Dong, 2008). Shape of 

the LS in acute brain slices guided whole-cell patch-clamp recordings (

inset

Bi

) from cells near 

the ventrolateral border of the LSr (

Bi

). The position of the biocytin-filled recorded cell (

inset

Bii

) was verified by post hoc staining (

Bii

). Representative sample trace of MCH-mediated 

hyperpolarization following bath application of 3 μM MCH (

Ci

). Time course of the MCH-

mediated change in RMP (

 RMP) at MCH-sensitive (filled circles) and MCH-insensitive cells 

(open circles; 

Cii

). Mean 

 RMP from each MCH-sensitive cell before MCH application (con), 

at the peak effect of MCH, and after MCH washout (wash) (

Ciii

). Representative sample trace of 

MCH-induced hyperpolarization in the presence of 500 nM TTX (

Di

). Time course of 

 RMP 

(

Dii

) was summarized as the mean 

 RMP from each cell before MCH application (con), at the 

peak effect of MCH, and after MCH washout (wash) (

Diii

). Scale bar: 200 µm (

Bi

,

 Bii

); 20 µm 

(

Bi 

inset

); 

50 μm (

Bii 

inset

); 25 mV, 2 min (

Ci

); 4 mV, 2 min (

Di

). Significance (

p

 < 0.05) was 

determined with a repeated measures two-way mixed-effect model ANOVA (

C

ii

) or repeated 

measures one-way ANOVA with Tukey post-hoc testing (

C

iii

D

iii

): * 

p

 < 0.05, ** 

p

 < 0.01, *** 

p

 <0.001. ACB, nucleus accumbens; ccg, corpus callosum, genu; CP, caudoputamen; LSc, lateral 

septal nucleus, caudal part; LSr, lateral septal nucleus, rostral part; MS, medial septal nucleus; 
VL, lateral ventricle. 

 

2.5.6   MCH-mediated hyperpolarization is MCHR1-dependent 

We screened for MCH-sensitive LS neurons by applying a short puff of MCH (

Figure 4A

i

). We 

found that a single MCH puff (MCH

puff

) produced a small but reversible RMP hyperpolarization 

(−2.0 ± 0.4 mV, n = 8) that was sufficient to identify an MCH

-sensitive neuron (

Figure 4A

ii

). A 

second MCH

puff

 

applied at least three minutes later also produced a similar (−1.6 ± 0.3 mV, n = 

8) hyperpolarization (

Figure 4A

ii

A

iii

). By contrast, a puff application of bath ACSF did not 

alter the RMP (0.5 ± 0.3 mV, n = 9; F(2, 22) = 18.17, 

p

 < 0.0001; 

Figure 4A

ii

A

iii

). 

To confirm that MCH-mediated hyperpolarization was occurring via the MCHR1 

receptor, we applied MCH in the presence of the MCHR1 antagonist, TC-MCH 7c. After 

identifying an MCH-sensitive cell (MCH

puff

: −1.6 ± 0.3 mV, n = 7), we pretreated the slice with 

10 µM TC-MCH 7c for 10

15 min. There was a main effect of the MCHR1 antagonist (F(2, 18) 

= 21.24; 

p

 < 0.0001), as a second MCH

puff

 applied in the presence of TC-MCH 7c no longer 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

55 

 

produced a hyperpolarization (−0.2 ± 0.2 mV, n = 7; 

p

 = 0.013; 

Figure 4B

i

,

 

B

iii

). Similarly, 

MCH application via the slice chamber over a longer duration also did not elicit a membrane 

hyperpolarization in the presence of TC-MCH 7c (MCH

bath

: 1.2 ± 0.4 mV, n = 7; 

p

 < 0.0001; 

Figure 4B

ii

B

iii

). These findings indicated that MCHR1 activation mediated the inhibitory 

effects of MCH.  

 

 

Figure 4. MCHR1-mediated hyperpolarization at LS cells. 

Brightfield photomicrograph 

showing the placement of a pipette for puff application during patch-clamp recording (

top

Ai

). 

Representative sample trace of the change in resting membrane potential (

 RMP) following a 

10-

second puff of ACSF or 3 μM MCH (MCH 1) followed by a subsequent MCH puff 3 minutes 

later (MCH 2) (

bottom

Ai

). Comparison of 

 

RMP following a puff of ACSF or 3 μM MCH 

over time (

Aii

) or immediately after the puff application (

Aiii

). Comparison of 

 RMP elicited in 

the presence or absence of the MCHR1 antagonist TC-

MCH 7c (10 μM) by a 10

-second puff of 

MCH (

Bi

), 5-minute bath application of MCH over time (

Bii

), or immediately after MCH 

application (

Biii

). Scale bar: 20 µm (

top

Ai

) 2 mV, 10 s (

bottom

Ai

). Significance (

p

 < 0.05) 

was determined with a Two-way ANOVA (

A

ii

, B

i

) or one-way ANOVA with Tukey post-hoc 

testing (

A

iii

, B

iii

): * 

p

 < 0.05, *** 

p

 < 0.001, **** 

p

 <0.0001. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

56 

 

2.5.7   MCH activated a chloride channel to hyperpolarize LS cells  

We next sought to determine the ionic basis of the MCH-mediated hyperpolarization. We 

compared the current

voltage (I

V) relationship of MCH-sensitive cells before and after a full 

bath application of MCH. We determined the I

V relationship of the cell by recording the 

steady-state current change elicited by each voltage step (

Figure 5A

i

). MCH application elicited 

a membrane current with a V

rev

 

of −63.7 ± 8.1 mV (n = 8), which corresponded to the predicted 

E

Cl

 

(−63.1 mV) under our conditions (

t

(7) = 0.17, 

p

 = 0.87; 

Figure 5A

ii

). We then elevated the 

internal chloride concentration to determine if MCH-mediated inhibition was chloride-

dependent. With an elevated chloride internal, MCH activated a current that corresponded with 

the new predicted E

Cl

 

of −44.8 mV

 (

t

(6) = 0.64, 

p

 = 0.55; 

Figure 5A

ii

,

 

A

iii

).  

The net current elicited by MCH revealed an outward rectification at depolarizing 

potentials. These properties are consistent with that of ionotropic GABA

A

 receptor currents 

(Valeyev 

et al.

, 1999) expressed in the LS (Heldt & Ressler, 2007; Hörtnagl 

et al.

, 2013) and that 

contribute a tonic chloride conductance (Lee & Maguire, 2014). To determine if the MCH-

mediated chloride current is related to the activation of GABA

A

 receptors, we next pretreated the 

slice with the GABA

A

 

receptor antagonist bicuculline (30 μM), and subsequent MCH co

-

application did not evoke a change in membrane current (

t

(11) = 2.57, 

p

 = 0.026; 

Figure 5A

iii

). 

There was a significant interaction in the effect of bicuculline on the MCH-mediated current 

elicited across the voltage range (F(7, 77) = 7.38, 

p

 < 0.0001; 

Figure 5A

ii

) thus supporting a 

MCH-mediated activation of a GABA

A

 receptor.  

To determine if this GABA

A

 receptor chloride conductance underlies the MCH-mediated 

hyperpolarization, we applied bicuculline to an MCH

puff

-

sensitive cell (−1.3 ± 0.2 mV, n = 9). 

Bicuculline pretreatment abolished the inhibitory effects of MCH (F(2, 24) = 31.78, 

p

 < 0.0001), 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

57 

 

as neither a short MCH

puff

 

(−0.1 ± 0.2 mV, n = 9; 

p

 = 0.027) nor prolonged MCH

bath

 application 

(2.0 ± 0.4 mV, n = 9; 

p

 < 0.0001) elicited a membrane hyperpolarization (

Figure 5B

). These 

findings indicated that a bicuculline-sensitive current underlies the inhibitory effect of MCH at 

LS cells and suggested that MCH may regulate the activation of a chloride conductance.   

MCHR1 activation can couple to multiple intracellular G proteins, but most commonly to 

G

i

/G

o

 proteins or G

proteins (Saito 

et al.

, 1999; Hawes 

et al.

, 2000). As PKC can be activated 

following MCHR1 stimulation (Pissios 

et al.

, 2003) and is linked to GABA

A

 receptor activation 

(Poisbeau 

et al.

, 1999) and increased chloride conductance via GABA

A

 receptors (Lin et al., 

1996), we determined if MCH-mediated inhibition was linked to PKC activity. We first 

identified MCH-responsive cells (MCH

puff

: −2.1 ± 0.4 mV, n = 5) and pretreated the LS brain 

slice with 100 nM calphostin C, a PKC inhibitor. Interestingly, MCH application in the presence 

of calphostin C did not hyperpolarize the RMP (MCH

puff

: −0.2 ± 0.2, n = 5; 

p

 = 0.038) even 

when MCH was applied for an extended duration (MCH

bath

:

 

2.3 ± 1.1 mV, n = 5; 

p

 = 0.030). 

These findings indicated a main effect of calphostin C treatment (F(2, 8) = 11.92; 

p

 = 0.004; 

Figure 5C

). Taken together, these results suggested that MCH activated a GABA

A

 receptor 

chloride current in a PKC-dependent manner.  

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

58 

 

 

Figure 5. MCH-mediated activation of protein kinase C-dependent GABA

A

 receptors. 

Representative current output from MCH-sensitive cells immediately before (control), during a 3 

μM MCH application, and following MCH washout (wash) in response to voltage steps (250 ms) 
applied at −10 mV increments from −55 mV to −125 mV (bottom right panel) (

Ai

). Comparison 

of the current

–voltage relationship of net current elicited by 3 μM MCH in the absence (red filled 

circles) or presence of the GABA

A

 

receptor antagonist bicuculline (BIC, 30 μM; blue filled 

circles) or with a high internal chloride concentration (green open squares) (

Aii

). Comparison of 

the change in resting membrane potential (

 

RMP) in the absence or presence of 30 μM BIC by 

a 10-second puff application of MCH over time (

Bi

), 5-minute bath application of MCH over 

time (

Bii

), or immediately after MCH application (

Biii

). Comparison of 

 RMP in the absence or 

presence of the protein kinase C inhibitor Calphostin C (CalC, 30 μM) by a 10

-second puff 

application of MCH over time (

Ci

), 5-minute bath application of MCH over time (

Cii

), or 

immediately after MCH application (

Ciii

). Scale bar: 100 pA, 100 ms (

Ai

). Significance (

p

 < 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

59 

 

0.05) was determined using a one-way ANOVA with Tukey post-hoc testing (A

iii

), repeated 

measures two-way ANOVA (

B

i

, C

i

), or repeated measures one-way ANOVA with Tukey post-

hoc testing (

B

iii

, C

iii

): * 

p

 < 0.05, **** 

p

 <0.0001. 

 

2.5.8   MCH did not inhibit GABAergic or glutamatergic input on LS cells  

Previous MCH research showed that MCH can act via a presynaptic mechanism (Zheng 

et al.

2005), therefore we next determined if MCH also acts presynaptically in the LS. The LS 

comprises primarily GABAergic neurons with reciprocal connections to other LS cells 

(Gallagher & Hasuo, 1989; Sheehan 

et al.

, 2004; Zhao 

et al.

, 2013). We observed a high baseline 

frequency of sIPSC events (7.2 ± 3.1 Hz, n = 8) that was consistent with high GABAergic tone at 

LS cells (Carette et al., 2001; 

Figure 6A

). MCH application produced a reversible rightward 

shift in the distribution of sIPSC interevent intervals (control vs. MCH: n = 8; D(8) = 0.27, 

p

 < 

0.0001; MCH vs. wash: n = 8; D(8) = 0.30, 

p

 < 0.0001; 

Figure 6B

C

) that reflected a 43% 

decrease in sIPSC frequency (baseline: 7.2 ± 3.1 Hz; MCH: 5.6 ± 2.7 Hz; wash: 6.4 ± 3.0 Hz; n 

= 8; F(2, 21) = 17.39, 

p

 < 0.0001; 

Figure 6C

 

inset

). In addition to decreasing sIPSC frequency, 

MCH produced a reversible leftward shift in the distribution of sIPSC event amplitudes (control 

vs. MCH: n = 8, D(8) = 0.23, 

p

 < 0.0001; MCH vs. wash: n = 8, D(8) = 0.30, 

p

 < 0.0001; 

Figure 

6D

) but did not decrease the mean amplitude of sIPSC events (control: 32.2 ± 5.0 pA; MCH: 

29.8 ± 5.5 pA; wash: 31.9 ± 5.9 pA; n = 8; F(2, 21) = 0.67, 

p

 = 0.52; 

Figure 6D 

inset

).  

We pretreated the slice with 500 nM TTX to abolish activity-dependent synaptic 

transmission and recorded mIPSC events to determine if MCH would act on GABAergic 

presynaptic terminals (

Figure 6E

H

). Interestingly, co-application of MCH in TTX did not 

affect the distribution of interevent intervals (control vs MCH: n = 8; D(8) = 0.10; 

p

 = 0.27; 

Figure 6G

) and, accordingly, did not change mIPSC frequency (control: 1.3 ± 0.4 Hz; MCH: 1.2 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

60 

 

± 0.3 Hz; wash: 1.3 ± 0.4 Hz; n = 8; F(2, 21) = 1.09, 

p

 = 0.35; 

Figure 6G 

inset

). Likewise, MCH 

also did not change the distribution of mIPSC amplitudes (control vs MCH: n = 8, D(8) = 0.08, 

p

 

= 0.47; 

Figure 6H

) or mean mIPSC amplitudes (control: 21.2 ± 1.3 pA; MCH: 21.4 ± 1.4 pA; 

wash: 21.0 ± 1.3 pA; n = 8; F(2, 21) = 0.18, 

p

 = 0.84; 

Figure 6H 

inset

). These findings 

suggested that MCH may not regulate presynaptic GABAergic inputs to LS cells.  

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

61 

 

 

Figure 6. MCH suppressed spontaneous but not miniature IPSC events at LS cells. 

Representative sample traces of spontaneous IPSC (sIPSC; 

A

) and miniature IPSC (mIPSC) 

events recorded in the presence of 500 nM TTX (

E

) were summarized as the change in sIPSC 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

62 

 

(

B

) or mIPSC frequency over time (

F

). The cumulative distribution of sIPSC (

C

) and mIPSC 

interevent intervals (

G

) and amplitudes (

D

H

were sampled immediately before (con), after 

MCH application, or following MCH washout (wash). Percent change in event frequency or 
amplitude was summarized in the 

inset

 

(

C

,

 D

,

 G

,

 H

). Scale: 50 pA, 150 s (

A

B

). Significance (

p

 

< 0.05) was determined with a Kolmogorov-Smirnov test (

C

D

) or repeated measures one-way 

ANOVA with Tukey post-hoc testing (

inset

): * 

p

 < 0.05, *** 

p

 < 0.001, **** 

p

 <0.0001.

 

 

The LS also receives glutamatergic input from different regions such as the hippocampus 

(Swanson & Cowan, 1977; Risold & Swanson, 1997

a

), which has also been shown to express 

MCHR1 (Saito 

et al.

, 1999). Therefore, we next examined if MCH can also change excitatory 

input to the LS. Spontaneous glutamatergic inputs to LS cells occur at a low frequency (1.3 ± 0.5 

Hz, n = 9), and there was a slow rundown of sEPSC frequency over time (

Figure 7A

B

) that 

shifted the distribution of interevent intervals throughout the recording (control vs MCH: n = 9, 

D(9) = 0.54, 

p

 < 0.0001; control vs wash: n = 9, D(9) = 0.42, 

p

 = 0.0003; 

Figure 7C

). 

Nonetheless, MCH did not alter sEPSC frequency (control: 1.3 ± 0.5 Hz; MCH: 1.3 ± 0.5 Hz; 

wash: 1.4 ± 0.6 Hz; n = 9; F(2, 16) = 0.60, 

p

 = 0.55; 

Figure 7C 

inset

). MCH application also did 

not change the amplitude of sEPSC events (control: 15.5 ± 2.6 pA; MCH: 15.3 ± 2.3 pA; wash: 

14.8 ± 2.0 pA; n = 9; F(2, 16) = 0.07, 

p

 = 0.91), which also reflected a gradual rundown over 

time (control vs MCH: n = 9, D(9) = 0.20, 

p

 = 0.21; control vs wash: n = 9, D(9) = 0.26, 

p

 = 

0.05; 

Figure 7D

).  

In the presence of TTX, MCH had no effect on the frequency (control: 2.7 ± 1.0 Hz; 

MCH: 2.6 ± 1.0 Hz; wash: 2.6 ± 1.0 Hz; n = 6; F(2, 10) = 1.35; 

p

 = 0.32; 

Figure 7E

G

) or the 

amplitude (control: 10.4 ± 1.1 pA; MCH: 10.1 ± 1.0 pA; wash: 10.2 ± 1.0 pA; n = 6; F(2, 10) = 

0.06; 

p

 = 0.85; 

Figure 7H

) of mEPSC events. Taken together, these findings suggested that 

MCH did not affect excitatory synaptic input.   

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

63 

 

 

Figure 7. MCH did not regulate glutamatergic events at LS cells.

 Representative sample 

traces of spontaneous EPSC (sEPSC; 

A

) and miniature EPSC (mEPSC) events recorded in the 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

64 

 

presence of 500 nM TTX (

E

) were summarized as the change in sEPSC (

B

) or mEPSC 

frequency over time (

F

). The cumulative distribution of sEPSC (

C

) and mEPSC interevent 

intervals (

G

) and amplitudes (

D

H

) were sampled immediately before (con), after MCH 

application, or following MCH washout (wash). Percent change in frequency or amplitude was 
summarized in the 

inset

 

(

C

,

 D

,

 G

,

 H

). Scale: 10 pA, 150 s (

A

); 50 pA, 150 s (

B

). Significance (

p

 

< 0.05) was determined with a Kolmogorov-Smirnov test (

C

D

): * 

p

 < 0.05, *** 

p

 < 0.001, **** 

p

 <0.0001. 

 

2.6  

Discussion  

MCHR1-expressing cells concentrated along the ventral and lateral boundaries of the LS and 

overlapped with the distribution pattern of MCH-ir fibers. We performed patch-clamp recordings 

from these MCHR1-rich hotspots and revealed a novel mechanism of MCH action in the LS. 

Pharmacological application of MCH directly hyperpolarized LS cells, but MCH did not alter 

synaptic input to LS cells. The inhibitory effects of MCH were MCHR1-dependent and mediated 

by an increased chloride current.  

The coincident distribution pattern of 

Mchr1 

mRNA and MCHR1-ir cells in the LS 

implicated that these were MCH target sites. 

Mchr1 

hybridization signals can be seen throughout 

the LS but was most prominent in the LSr. This corresponded with 

Mchr1 

mRNA expression in 

the rat LS that was higher in the intermediate (Saito et al., 2001; i.e., mouse LSr) and ventral part 

of the LS (Bittencourt et al., 1992; i.e., mouse LSv) and lower in the dorsal part of the LS 

(Hervieu et al., 2000; i.e., mouse LSc). 

Mchr1

 hybridization signals reflected the presence of 

MCHR1 cells along the ventrolateral edge of the LSr anteriorly, as well as within the small LSv 

cluster posteriorly.  

MCHR1-positive LS cells were distributed within or near MCH-ir fiber fields, which 

were also more abundant in the LSr than the LSc or LSv. Nerve terminals from MCH neurons 

are known to terminate in the LSr and form glutamatergic synapses to innervate LS cells (Chee 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

65 

 

et al.

, 2015). Interestingly, glutamatergic nerve endings from MCH neurons terminated in the 

dorsal zones of the LSr (Chee 

et al.

, 2015; Liu 

et al.

, 2022), where MCH-ir fibers were relatively 

sparse. Rather, MCH-ir fibers were prominent within the ventrolateral zones of the LSr where 

they spatially overlapped with MCHR1-expressing cells. MCH-ir fibers also extend into the 

medial zones of the LSr from the medial septum, but medially distributed MCH-ir fibers did not 

overlap with MCHR1-rich zones.  

The proximity between MCH fibers and MCHR1-expressing LS cells implicated hotspots 

for MCHR1 activation. Most MCHR1 cells lie adjacent to but were not in contact with passing 

fibers and suggested that MCH is preferentially released extrasynaptically in the LS. MCH 

availability within the LS may also be a result of uptake from the lateral ventricle (Ruiz-Viroga 

et al.

, 2021) to then reach MCHR1 LS cells by volume transmission (Noble 

et al.

, 2018). This 

could be facilitated by MCHR1 expression along the primary cilium of neurons (Berbari 

et al.

2008; Diniz 

et al.

, 2020) to detect MCH in the extracellular space (Diniz 

et al.

, 2020). 

Furthermore, like in the nucleus accumbens (Sears 

et al.

, 2010) and nucleus of the solitary tract 

(Zheng 

et al.

, 2005) MCH-ir fibers can also be closely associated with LS cells, including 

MCHR1-expressing cells in the ventrolateral LS that were in direct physical contact with MCH-

ir fibers. However, ultrastructural analyses would be required to determine if these contacts 

reflect active release sites. The functional contributions of local MCH release or MCH uptake 

from the ventricular space are not known (Ruiz-Viroga 

et al.

, 2021) but may influence 

behaviours that transpire over a longer timeframe. Meanwhile, local sources of MCH like those 

in direct contact with MCHR1 LS cells may mediate rapid, acute responses to environmental 

stressors.  

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

66 

 

Functional MCHR1 activation directly hyperpolarized and suppressed action potential 

firing of LS cells. While MCH can act presynaptically by inhibiting glutamatergic input (Zheng 

et al.

, 2005), it did not regulate either glutamatergic or GABAergic input to the LS. The 

inhibitory effect of MCH was mediated by a bicuculline-sensitive chloride current, which 

suggested the activation of ionotropic GABA

A

 receptors. While MCHR1 activation is known to 

couple to G

i

/G

o

-proteins (Gao, 2009), it can also couple to G

q

-proteins (Bächner 

et al.

, 1999; 

Pissios 

et al.

, 2003). MCHR1 coupling to the G

q

 pathway may activate chloride currents 

(Bächner 

et al.

, 1999) in a PKC-dependent manner (Pissios 

et al.

, 2003), as PKC activation can 

increase chloride influx via GABA

A

 receptors (Lin 

et al.

, 1994, 1996

b

). The postsynaptic 

mechanisms linked to MCH-mediated inhibition, including at the medial septal nucleus (Wu 

et 

al.

, 2009) and nucleus accumbens (Sears 

et al.

, 2010), have involved the activation of potassium 

channels, thus our findings implicate a novel chloride-mediated mechanism underlying the 

inhibitory actions of MCH. 

The LS may integrate MCH roles that increase feeding (Qu 

et al.

, 1996; Rossi 

et al.

1997; Dilsiz 

et al.

, 2020) and anxiety-related behaviours (Smith et al., 2006; Dilsiz et al., 2020) 

by suppressing LS activity. Photostimulating GABAergic LS cells reduces feeding (Xu 

et al.

2019), and GABA

A

 and GABA

B

-mediated inhibition of LS cells can increase feeding (Gabriella 

et al., 2022; Calderwood et al., 2020). Since MCH can inhibit LS cells, MCH may thus increase 

feeding by downregulating GABAergic output from the LS. The LS is a notable region that 

regulates anxiety (Sheehan 

et al.

, 2004), and this may be ascribed to its afferent or efferent 

connections. MCH dampens LS activity, which can elicit anxiogenesis. For example, inhibiting 

hippocampal projections to the LS increased anxiety-like behaviours (Parfitt 

et al.

, 2017).     

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

67 

 

The LSc, LSr, and LSv designations by the 

Allen Reference Atlas 

are based on 

cytoarchitectonic parcellation (Dong, 2008), but LS divisions can also be informed by afferent 

and efferent connections that overlap with the distribution of MCHR1 cells (Risold and 

Swanson, 1997a; Risold and Swanson, 1997b). The ventrolateral LSr receives strong 

glutamatergic input from the ventral hippocampal CA1 (Risold and Swanson, 1997a) to suppress 

feeding and anxiety (Parfitt 

et al.

, 2017). Additionally, there is a concentration of cells 

expressing the type 2 corticotropin-releasing factor receptor (

Crfr2

) in the lateral LSr that 

innervate the anterior hypothalamic nucleus (Risold & Swanson, 1997

a

; Bang 

et al.

, 2022). 

Activating LS 

Crfr2

 terminals in the anterior hypothalamus promotes anxiety (Anthony 

et al.

2014). 

The LS can also be divided into band-shaped domains informed by its chemoarchitecture 

(Risold and Swanson, 1997b). The distribution pattern of MCHR1-expressing LS cells 

corresponded to dorsolateral and ventrolateral LSr bands that overlap with enkephalin and 

urocortin immunoreactive fibers (Risold & Swanson, 1997

b

; Chen 

et al.

, 2011) anteriorly. These 

fibers have been implicated in feeding and anxiety-regulated behaviours at the LS. Enkephalin 

immunoreactivity is lower when food is less abundant and may reflect food availability (Kovacs 

et al.

, 2005). Enkephalin acts via the µ-opioid receptor in the LS (Mansour 

et al.

, 1994), and 

administration of a µ-opioid receptor agonist into the LSr increases feeding (Calderwood 

et al.

2020) and anxiety-like behaviour in mice (le Merrer 

et al.

, 2006). Urocortin activates CRFR2 

receptors in the ventrolateral LS (Van Pett 

et al.

, 2000; Anthony 

et al.

, 2014) and can inhibit 

feeding during stress (Stengel & Taché, 2014). Urocortin administration into the LS inhibits 

feeding and increases anxiety-like behaviour (Wang & Kotz, 2002; Bakshi 

et al.

, 2007; Noguchi 

et al.

, 2013) and activation of 

Crfr2

 LS cells also promotes anxiety (Anthony 

et al.

, 2014). 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

68 

 

Interestingly, urocortin infusion into the LS can reduce orexin-mediated feeding (Wang & Kotz, 

2002) and given that orexin and MCH have complimentary roles on feeding (Barson 

et al.

2013), interactions between urocortin and MCH may modulate feeding behaviour in response to 

stress.  

MCH may also act via the LSv to mediate anxiety behaviours. MCHR1-expressing cells 

in the LSv may overlap with Substance P-immunoreactive fibers (Risold & Swanson, 1997

b

), 

and Substance P can have an anxiogenic effects in the LS (Gavioli 

et al.

, 1999, 2002; Ebner 

et 

al.

, 2008). The LSv receives glutamatergic input from the ventral hippocampus to promote 

coping mechanisms such as stress-induced grooming, which could help relieve feelings of stress 

and anxiety (Mu 

et al.

, 2020). Given the inhibitory actions of MCH on the LS, it may thus act via 

the LSv to dampen such neuronal coping mechanisms. 

In conclusion, our findings showed that MCH inhibits the LS and suggests that MCH 

might converge with enkephalin and urocortin at the LSr, or with Substance P in the LSv, to 

fine-tune feeding and anxiety-related behaviours. We anticipated that the convergence of MCH 

fibers and MCHR1-expressing cells would assist in identifying hotspots underlying the action of 

MCH in the LS, and our electrophysiological recordings in these regions revealed a novel 

mechanism of MCH-mediated action that inhibited LS cells by increasing chloride conductance.

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

69 

 

2.7  

References

 

Adamantidis A, Thomas E, Foidart A, Tyhon A, Coumans B, Minet A, Tirelli E, Seutin V, 

Grisar T & Lakaye B (2005). Disrupting the melanin-concentrating hormone receptor 1 in 
mice leads to cognitive deficits and alterations of NMDA receptor function. 

Eur J Neurosci

 

21,

 2837

2844. 

Adamantidis A & de Lecea L (2009). A role for Melanin-Concentrating Hormone in learning 

and memory. 

Peptides (NY)

 

30,

 2066

2070. 

Anthony TE, Dee N, Bernard A, Lerchner W, Heintz N & Anderson DJ (2014). Control of 

stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. 

Cell

 

156,

 

522

536. 

Bächner D, Kreienkamp HJ, Weise C, Buck F & Richter D (1999). Identification of melanin 

concentrating hormone (MCH) as the natural ligand for the orphan somatostatin-like receptor 
1 (SLC-1). 

FEBS Lett

 

457,

 522

524. 

Bakshi VP, Newman SM, Smith-roe S, Jochman KA & Kalin NH (2007). Stimulation of Lateral 

Septum CRF 2 Receptors Promotes Anorexia and Stress-

Like Behaviors : Functional 

Homology to CRF 1 Receptors in Basolateral Amygdala. 

J Neurosci

 

27,

 10568

10577. 

Bang JY, Zhao J, Rahman M, St-Cyr S, McGowan PO & Kim JC (2022). Hippocampus-Anterior 

Hypothalamic Circuit Modulates Stress-Induced Endocrine and Behavioral Response. 

Front 

Neural Circuits

; DOI: 10.3389/fncir.2022.894722. 

Barson JR, Morganstern I & Leibowitz SF (2013). Complementary roles of orexin and melanin-

concentrating hormone in feeding behavior. 

Int J Endocrinol

 

2013,

 1

10. 

Beekly BG, Frankel WC, Berg T, Allen SJ, Garcia-Galiano D, Vanini G & Elias CF (2020). 

Dissociated Pmch and Cre expression in lactating Pmch-Cre BAC transgenic mice. 

Front 

Neuroanat

 

14,

 1

15. 

Berbari NF, Johnson AD, Lewis JS, Askwith CC & Mykytyn K (2008). Identification of Ciliary 

Localization Sequences within the Third Intracellular Loop of G Protein-coupled Receptors. 

Mol Biol Cell

 

19,

 1540

1547. 

Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon J ‐L, Vale W & Sawchenko PE 

(1992). The melanin‐concentrating hormone system of the rat brain: An immuno‐ and 

hybridization histochemical characterization. 

J Comp Neurol

 

319,

 218

245. 

Bono BS, Ly NKK, Miller PA, Williams-Ikhenoba J, Dumiaty Y & Chee MJ (2022). Spatial 

distribution of beta-klotho mRNA in the mouse hypothalamus, hippocampal region, 
subiculum, and amygdala. 

J Comp Neurol

 

530,

 1634

1657. 

Bouyer K & Simerly RB (2013). Neonatal leptin exposure specifies innervation of 

presympathetic hypothalamic neurons and improves the metabolic status of leptin-deficient 
mice. 

J Neurosci

 

33,

 840

851. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

70 

 

Broberger C (1999). Hypothalamic cocaine- and amphetamine-regulated transcript (CART) 

neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating 
hormone, orexin/hypocretin and neuropeptide Y. 

Brain Res

 

848,

 101

113. 

Broberger C, de Lecea L, Sutcliffe JG, Ho¨kfelt T & Ho¨kfelt H (1998). Hypocretin/Orexin-and 

Melanin-Concentrating Hormone-Expressing Cells Form Distinct Populations in the Rodent 
Lateral Hypothalamus: Relationship to the Neuropeptide Y and Agouti Gene-Related Protein 
Systems. 

J Comp Neurol

 

402,

 460

474. 

Calderwood MT, Tseng A & Glenn Stanley B (2020). Lateral septum mu opioid receptors in 

stimulation of feeding. 

Brain Res

 

1734,

 146648. 

Carette B, Poulain P & Beauvillain JC (2001). Noradrenaline modulates GABA-mediated 

synaptic transmission in neurones of the mediolateral part of the guinea pig lateral septum via 
local circuits. 

Neurosci Res

 

39,

 71

77. 

Chee MJS, Arrigoni E & Maratos-Flier E (2015). Melanin-concentrating hormone neurons 

release glutamate for feedforward inhibition of the lateral septum. 

J Neurosci

 

35,

 3644

3651. 

Chee MJS, Pissios P & Maratos-Flier E (2013). Neurochemical characterization of neurons 

expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. 

J Comp 

Neurol

 

521,

 2208

2234. 

Chen P, Lin D, Giesler J & Li C (2011). Identification of urocortin 3 afferent projection to the 

ventromedial nucleus of the hypothalamus in rat brain. 

J Comp Neurol

 

519,

 2023

2042. 

Croizier S, Franchi-Bernard G, Colard C, Poncet F, la Roche A & Risold PY (2010). A 

comparative analysis shows morphofunctional differences between the rat and mouse 
melanin-concentrating hormone systems. 

PLoS One

 

5,

 e15471. 

Dilsiz P, Aklan I, Sayar Atasoy N, Yavuz Y, Filiz G, Koksalar F, Ates T, Oncul M, Coban I, 

Ates Oz E, Cebecioglu U, Alp M, Yilmaz B & Atasoy D (2020). MCH Neuron Activity Is 
Sufficient for Reward and Reinforces Feeding. 

Neuroendocrinology

 

110,

 258

270. 

Diniz GB, Battagello DS, Klein MO, Bono BSM, Ferreira JGP, Motta-Teixeira LC, Duarte JCG, 

Presse F, Nahon JL, Adamantidis A, Chee MJ, Sita L v. & Bittencourt JC (2020). Ciliary 
melanin-concentrating hormone receptor 1 (MCHR1) is widely distributed in the murine CNS 
in a sex-independent manner. 

J Neurosci Res

 

0,

 1

27. 

Dong HW (2008). 

The Allen reference atlas: A digital color brain atlas of the C57BL/6J male 

mouse

. John Wiley & Sons, Hoboken, NJ. 

Ebner K, Muigg P, Singewald G & Singewald N (2008). Substance P in Stress and Anxiety NK-

1 Receptor Antagonism Interacts with Key Brain Areas of the Stress Circuitry. 

Ann N Y Acad 

Sci

 

1144,

 61

73. 

Elias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J, Tatro JB, Huffman GE, 

Ollmann MM, Barsh GS, Sakurai T, Yanagisawa M & Elmquist JK (1998). Chemically 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

71 

 

defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. 

Comp Neurol

 

402,

 442

459. 

Ferreira J, Bittencourt J & Adamantidis A (2017). Melanin-concentrating hormone and sleep. 

Curr Opin Neurobiol

 

44,

 152

158. 

Gabriella I, Tseng A, Sanchez KO, Shah H, Stanley BG, Gabriella I, Tseng A, Sanchez KO, 

Shah H & Stanley BG (2022). Stimulation of GABA Receptors in the Lateral Septum Rapidly 
Elicits Food Intake and Mediates Natural Feeding. 

Brain Sci

 

12,

 848. 

Gallagher JP & Hasuo H (1989). Bicuculline‐ and phaclofen‐sensitive components of N‐methyl‐

D‐aspartate‐induced hyperpolarizations in rat dorsolateral septal nucleus neurones. 

J Physiol

 

418,

 367

377. 

Gao X (2009). Electrophysiological effects of MCH on neurons in the hypothalamus. 

Peptides 

(NY)

 

30,

 2025

2030. 

Gavioli EC, Canteras NS & de Lima TCM (1999). Anxiogenic-like effect induced by substance 

P injected into the lateral septal nucleus. 

Neuroreport

 

10,

 3399

3403. 

Gavioli EC, Canteras NS & De Lima TCM (2002). The role of lateral septal NK1 receptors in 

mediating anxiogenic effects induced by intracerebroventricular injection of substance P. 

Behav Brain Res

 

134,

 411

415. 

Georgescu D, Sears RM, Hommel JD, Barrot M, Bolan CA, Marsh DJ, Bednarek MA, Bibb JA, 

Maratos-flier E, Nestler EJ & Dileone RJ (2005). The Hypothalamic Neuropeptide Melanin-
Concentrating Hormone Acts in the Nucleus Accumbens to Modulate Feeding Behavior and 
Forced-Swim Performance. 

J Neurosci

 

25,

 2933

2940. 

Harthoorn L, Sañé A, Nethe M & van Heerikhuize J (2005). Multi-transcriptional profiling of 

melanin-concentrating hormone and orexin-containing neurons. 

Cell Mol Neurobiol

 

25,

 

1209

1223. 

Hawes B, Kil E, Green B, O’Neill K, Fried S & Graziano M (2000). The melanin

-concentrating 

hormone receptor couples to multiple G proteins to activate diverse intracellular signaling 
pathways. 

Endocrinology

 

141,

 4524

4532. 

Heldt SA & Ressler KJ (2007). Forebrain and midbrain distribution of major benzodiazepine-

sensitive GABAA receptor subunits in the adult C57 mouse as assessed with in situ 
hybridization. 

Neuroscience

 

150,

 370

385. 

Hervieu G, Cluderay J, Harrison D, Meakin J, Maycox P, Nasir S & Leslie R (2000). The 

distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) 
receptor gene, slc-1, in the central nervous system of the rat. 

Eur J Neurosci

 

12,

 1194

1216. 

Hill J, Duckworth M, Murdock P, Rennie G, Sabido-David C, Ames RS, Szekeres P, Wilson S, 

Bergsma DJ, Gloger IS, Levy DS, Chambers JK & Muir AI (2001). Molecular Cloning and 
Functional Characterization of MCH2, a Novel Human MCH Receptor. 

J Biol Chem

 

276,

 

20125

20129. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

72 

 

Hörtnagl H, Tasan RO, Wieselthaler A, Kirchmair E, Sieghart W & Sperk G (2013). Patterns of 

mRNA and protein expression for 12 GABAA receptor subunits in the mouse brain. 

Neuroscience

 

236,

 345

372. 

Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D & 

Adamantidis AR (2013). Optogenetic identification of a rapid eye movement sleep 
modulatory circuit in the hypothalamus. 

Nat Neurosci

 

16,

 1637

1643. 

Kim T-K & Han P-L (2016). Physical Exercise Counteracts Stress-induced Upregulation of 

Melanin-concentrating Hormone in the Brain and Stress-induced Persisting Anxiety-like 
Behaviors. 

Exp Neurobiol

 

25,

 163

173. 

Kokkotou E, Jeon JY, Wang X, Marino FE, Carlson M, Trombly DJ, Maratos-flier E, Jeon JY, 

Wang X, Marino FE, Carlson M, Trombly DJ & Mice EM (2005). Mice with MCH ablation 
resist diet-induced obesity through strain-specific mechanisms. 

Am J Physiol Regul Integr 

Comp Physiol

 

02215,

 117

124. 

Kovacs EG, Szalay F & Halasy K (2005). Fasting-induced changes of neuropeptide 

immunoreactivity in the lateral septum of male rats. 

Acta Biol Hung

 

56,

 185

197. 

Krimer LS, Jakab RL & Goldman-Rakic PS (1997). Quantitative three-dimensional analysis of 

the catecholaminergic innervation of identified neurons in the macaque prefrontal cortex. 

Neurosci

 

17,

 7450

7461. 

Lambe EK, Krimer LS & Goldman-Rakic PS (2000). Differential postnatal development of 

catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus 
monkey. 

J Neurosci

 

20,

 8780

8787. 

Lee V & Maguire J (2014). The impact of tonic GABAA receptor-mediated inhibition on 

neuronal excitability varies across brain region and cell type. 

Front Neural Circuits

 

8,

 1

27. 

Lembo PMC, Grazzini E, Cao J, Hubatsch DA, Pelletier M, Hoffert C, St-Onge S, Pou C, 

Labrecque J, Groblewski T, O’Donnell D, Payza K, Ahmad S & Walker P (1999). The 

receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled 
receptor. 

Nat Cell Biol

 

1,

 267

271. 

Le Merrer J, Cagniard B & Cazala P (2006). Modulation of anxiety by mu-opioid receptors of 

the lateral septal region in mice. 

Pharmacol Biochem Behav

 

83,

 465

479. 

Lin YF, Angelotti TP, Dudek EM, Browning MD & Macdonald RL (1996

a

). Enhancement of 

recombinant α1β1γ2L γ

-aminobutyric acid(A) receptor whole-cell currents by protein kinase 

C is mediated through phosphorylation of both β1 and γ2L subunits. 

Mol Pharmacol

 

50,

 185

195. 

Lin YF, Angelotti TP, Dudek EM, Browning MD & Macdonald RL (1996

b

). Enhancement of 

recombinant α1β1γ2L γ

-aminobutyric acid(A) receptor whole-cell currents by protein kinase 

C is mediated through phosphorylation of both β1 and γ2L subunits. 

Mol Pharmacol

 

50,

 185

195. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

73 

 

Lin YF, Browning MD, Dudek EM & Macdonald RL (1994). Protein kinase C enhances 

recombinant bovine α1β1γ2L GABAA receptor whole

-cell currents expressed in L929 

fibroblasts. 

Neuron

 

13,

 1421

1431. 

Lipo E, Asrat S, Huo W, Sol A, Fraser CS & Isberg RR (2022). 5’ Untranslated mRNA Regions 

Allow Bypass of Host Cell Translation Inhibition by Legionella pneumophila. 

Infect Immun

 

90,

 e0017922. 

Liu J-J, Tsien RW & Pang ZP (2022). Hypothalamic melanin-concentrating hormone regulates 

hippocampus-dorsolateral septum activity. 

Nat Neurosci

 

25,

 61

71. 

Ludwig D, Tritos N, Mastaitis J, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier J & 

Maratos-Flier E (2001). Melanin-concentrating hormone overexpression in transgenic mice 
leads to obesity and insulin resistance. 

J Clin Invest

 

107,

 379

386. 

Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H & Watson SJ (1994). Mu, Delta, 

and Kappa Opioid Receptor mRNA Expression in the Rat CNS: An In Situ Hybridization 
Study. 

J Comp Neurol

 

350,

 412

438. 

Mickelsen L, Bolisetty M, Chimileski B, Fujita A, Beltrami E, Costanzo J, Naparstek J, Robson 

P & Jackson A (2019). Single-cell transcriptomic analysis of the lateral hypothalamic area 
reveals molecularly distinct populations of inhibitory and excitatory neurons. 

Nat Neurosci

 

22,

 642

656. 

Mickelsen LE, Kolling FW, IV, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE & 

Jackson AC (2017). Neurochemical Heterogeneity Among Lateral Hypothalamic 
Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-
Cell Gene Expression Analysis. 

eNeuro

 

4,

 13

17. 

Mogi K, Funabashi T, Mitsushima D, Hagiwara H & Kimura F (2005). Sex Difference in the 

Response of Melanin-Concentrating Hormone Neurons in the Lateral Hypothalamic Area to 
Glucose, as Revealed by the Expression of Phosphorylated Cyclic Adenosine 3,5-
Monophosphate Response Element-Binding Protein. 

Endocrinology

 

146,

 3325

3333. 

Monzon M, de Souza M, Izquierdo L, Izquierdo I, Barros D & de Barioglio S (1999). Melanin-

concentrating hormone (MCH) modifies memory retention in rats. 

Peptides (NY)

 

20,

 1517

1519. 

Mu M-D, Geng H-Y, Rong K-L, Peng R-C, Wang S-T, Geng L-T, Qian Z-M, Yung W-H & Ke 

Y (2020). A limbic circuitry involved in emotional stress-induced grooming. 

Nat Commun

 

11,

 

2261. 

Mul JD, la Fleur SE, Toonen PW, Afrasiab-Middelman A, Binnekade R, Schetters D, Verheij 

MMM, Sears RM, Homberg JR, Schoffelmeer ANM, Adan RAH, DiLeone RJ, de Vries TJ & 
Cuppen E (2011). Chronic loss of melanin-concentrating hormone affects motivational 
aspects of feeding in the rat. 

PLoS One

 

6,

 e19600. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

74 

 

Mystkowski P, Seeley RJ, Hahn TM, Baskin DG, Havel PJ, Matsumoto AM, Wilkinson CW, 

Peacock-Kinzig K, Blake KA & Schwartz MW (2000). Hypothalamic Melanin-Concentrating 
Hormone and Estrogen-Induced Weight Loss. 

J Neurosci

 

20,

 8637

8642. 

Negishi K, Payant MA, Schumacker KS, Wittmann G, Butler RM, Lechan RM, Steinbusch 

HWM, Khan AM & Chee MJ (2020). Distributions of hypothalamic neuron populations 
coexpressing tyrosine hydroxylase and the vesicular GABA transporter in the mouse. 

J Comp 

Neurol

 

528,

 1833

1855. 

Noble E, Hahn J, Konanur V, Hsu T, Page S, Cortella A, Liu C, Song M, Suarez A, Szujewski C, 

Rider D, Clarke J, Darvas M, Appleyard S & Kanoski S (2018). Control of Feeding Behavior 
by Cerebral Ventricular Volume Transmission of Melanin-Concentrating Hormone. 

Cell 

Metab

 

28,

 55-68.e7. 

Noguchi T, Makino S, Shinahara M, Nishiyama M, Hashimoto K & Terada Y (2013). Effects of 

gold thioglucose treatment on central corticotrophin-releasing hormone systems in mice. 

Neuroendocrinol

 

25,

 340

349. 

Parfitt GM, Nguyen R, Yoon Bang J, Aqrabawi AJ, Tran MM, Seo K, Richards BA & Kim JC 

(2017). Bidirectional Control of Anxiety-Related Behaviors in Mice: Role of Inputs Arising 
from the Ventral Hippocampus to the Lateral Septum and Medial Prefrontal Cortex. 

Neuropsychopharmacology

 

42,

 1715

1728. 

Pissios P, Bradley R & Maratos-Flier E (2006). Expanding the scales: The multiple roles of 

MCH in regulating energy balance and other biological functions. 

Endocr Rev

 

27,

 606

620. 

Pissios P, Trombly DJ, Tzameli I & Maratos-Flier E (2003). Melanin-concentrating hormone 

receptor 1 activates extracellular signal-regulated kinase and synergizes with Gs-coupled 
pathways. 

Endocrinology

 

144,

 3514

3523. 

Poisbeau P, Cheney MC, Browning MD & Mody I (1999). Modulation of synaptic GABA(A) 

receptor function by PKA and PKC in adult hippocampal neurons. 

J Neurosci

 

19,

 674

683. 

Qu D, Ludwig D, Gammeltoft S, Piper M, Pelleymounter M, Cullen M, Mathes W, Przypek R, 

Kanarek R & Maratos-Flier E (1996). A role for melanin-concentrating hormone in the 
central regulation of feeding behaviour. 

Nature

 

380,

 243

247. 

Rao Y, Lu M, Ge F, Marsh DJ, Qian S, Wang AH, Picciotto MR & Gao XB (2008). Regulation 

of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating 
hormone in the lateral hypothalamus. 

J Neurosci

 

28,

 9101

9110. 

Risold PY & Swanson LW (1997

a

). Connections of the rat lateral septal complex. 

Brain Res 

Brain Res Rev

 

24,

 115

195. 

Risold PY & Swanson LW (1997

b

). Chemoarchitecture of the rat lateral septal nucleus. 

Brain 

Res Brain Res Rev

 

24,

 91

113. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

75 

 

Rondini TA, de Crudis Rodrigues B, de Oliveira AP, Bittencourt JC & Elias CF (2007). 

Melanin-concentrating hormone is expressed in the laterodorsal tegmental nucleus only in 
female rats. 

Brain Res Bull

 

74,

 21

28. 

Rossi M, Choi SJ, O’Shea D, Miyoshi T, Ghatei MA & Bloom SR (1997). 

Melanin-

concentrating hormone acutely stimulates feeding, but chronic administration has no effect on 
body weight. 

Endocrinology

 

138,

 351

355. 

Ruiz-Viroga V, Urbanavicius J, Torterolo P & Lagos P (2021). In vivo uptake of a fluorescent 

conjugate of melanin-concentrating hormone in the rat brain. 

J Chem Neuroanat

 

114,

 101959. 

Saito Y, Cheng M, Leslie FM & Civelli O (2001). Expression of the melanin-concentrating 

hormone (MCH) receptor mRNA in the rat brain. 

J Comp Neurol

 

435,

 26

40. 

Saito Y, Nothacker HP, Wang Z, Lin SHS, Leslie F & Civelli O (1999). Molecular 

characterization of the melanin-concentrating-hormone receptor. 

Nature

 

400,

 265

269. 

Sears RM, Liu RJ, Narayanan NS, Sharf R, Yeckel MF, Laubach M, Aghajanian GK & DiLeone 

RJ (2010). Regulation of nucleus accumbens activity by the hypothalamic neuropeptide 
melanin-concentrating hormone. 

J Neurosci

 

30,

 8263

8273. 

Sheehan TP, Chambers RA & Russell DS (2004). Regulation of affect by the lateral septum : 

implications for neuropsychiatry. 

Brain Res Brain Res Rev

 

46,

 71

117. 

Shimada M, Tritos NA, Lowell BB, Flier JS & Maratos-Flier E (1998). Mice lacking melanin-

concentrating hormone are hypophagic and lean. 

Nature

 

396,

 670

674. 

Skofitsch G, Jacobowitz DM & Zamir N (1985). Immunohistochemical Localization of a 

Melanin Concentrating Hormone-Like Peptide in the Rat Brain. 

Brain Res Bull

 

15,

 635

649. 

Smith D, Davis R, Rorick-Kehn L, Morin M, Witkin J, McKinzie D, Nomikos G & Gehlert D 

(2006). Melanin-concentrating hormone-1 receptor modulates neuroendocrine, behavioral, 
and corticolimbic neurochemical stress responses in mice. 

Neuropsychopharmacology

 

31,

 

1135

1145. 

Stengel A & Taché Y (2014). CRF and urocortin peptides as modulators of energy balance and 

feeding behavior during stress. 

Front Neurosci

 

8,

 1

10. 

Swanson LW & Cowan WM (1977). An autoradiographic study of the organization of the efferet 

connections of the hippocampal formation in the rat. 

J Comp Neurol

 

172,

 49

84. 

Takase K, Kikuchi K, Tsuneoka Y, Oda S & Kuroda M (2014). Meta-Analysis of Melanin-

Concentrating Hormone Signaling-Deficient Mice on Behavioral and Metabolic Phenotypes. 

PLoS One

 

9,

 99961. 

Tan CP et al. (2002). Melanin-concentrating hormone receptor subtypes 1 and 2: Species-

specific gene expression. 

Genomics

 

79,

 785

792. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

76 

 

Teixeira PDS, Wasinski F, Lima LB, Frazão R, Bittencourt JC & Donato J (2020). Regulation 

and neurochemical identity of melanin-concentrating hormone neurones in the preoptic area 
of lactating mice. 

J Neuroendocrinol

 

32,

 e12818. 

Terrill SJ, Subramanian KS, Lan R, Liu CM, Cortella AM, Noble EE & Kanoski SE (2020). 

Nucleus accumbens melanin-concentrating hormone signaling promotes feeding in a sex-
specific manner HHS Public Access. 

Neuropharmacology

 

178,

 108270. 

Valeyev AY, Hackman JC, Holohean AM, Wood PM, Katz JL & Davidoff RA (1999). GABA-

induced Cl- current in cultured embryonic human dorsal root ganglion neurons. 

Neurophysiol

 

82,

 1

9. 

Van Pett K, Viau V, Bittencourt J, Chan R, Li H, Arias C, Prins G, Perrin M, Vale W & 

Sawchenko P (2000). Distribution of mRNAs encoding CRF receptors in brain and pituitary 
of rat and mouse. 

J Comp Neurol

 

428,

 191

212. 

Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Léger L, Boissard R, Salin P, Peyron C & 

Luppi P-H (2003). A role of melanin-concentrating hormone producing neurons in the central 
regulation of paradoxical sleep. 

BMC Neurosci

 

4,

 19. 

Wang C & Kotz C (2002). Urocortin in the lateral septal area modulates feeding induced by 

orexin A in the lateral hypothalamus. 

Am J Physiol Regul Integr Comp Physiol

 

283,

 358

367. 

Wu M, Dumalska I, Morozova E, van den Pol A & Alreja M (2009). Melanin-concentrating 

hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy 
balance to reproduction. 

Proc Natl Acad Sci U S A

 

106,

 17217

17222. 

Xu Y, Lu Y, Cassidy R, Mangieri L, Zhu C, Huang X, Jiang Z, Justice N, Xu Y, Arenkiel B & 

Tong Q (2019). Identification of a neurocircuit underlying regulation of feeding by stress-
related emotional responses. 

Nat Commun

 

10,

 3446. 

Zhao C, Eisinger B & Gammie SC (2013). Characterization of GABAergic Neurons in the 

Mouse Lateral Septum: A Double Fluorescence In Situ Hybridization and 
Immunohistochemical Study Using Tyramide Signal Amplification. 

PLoS One

 

8,

 e73750. 

Zheng H, Patterson LM, Morrison C, Banfield BW, Randall JA, Browning KN, Travagli RA & 

Berthoud HR (2005). Melanin concentrating hormone innervation of caudal brainstem areas 
involved in gastrointestinal functions and energy balance. 

Neuroscience

 

135,

 611

625. 

  

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

77 

 

2.8 

Supporting figures 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

78 

 

Supporting figure 1. Schematic for mapping MCH-immunoreactive fibers, 

Mchr1

 mRNA 

hybridization, and MCHR1 immunoreactivity in the LS. 

NeuroTrace- (

Ai

Ci

) or Nissl-

stained tissue (

Bi

) were parcellated to define the neuroanatomical boundaries of the LS and 

surrounding regions with reference to the 

Allen Reference Atlas

 (ARA; Dong, 2008). The 

parcellations were aligned to confocal photomicrographs of MCH-immunoreactive fibers (

Aii

), 

Mchr1

 mRNA hybridization signals (

Bii

), and MCHR1-immunoreactive cells (

Cii

). The traced 

fibers (

Aiii

), labeled 

Mchr1

 cells (

Biii

), or labeled MCHR1 cells (

Ciii

) were mapped onto 

ARA

 

brain templates. ACB, nucleus accumbens; ccg, corpus callosum, genu; CP, caudoputamen; LSc, 
lateral septal nucleus, caudal part; LSr, lateral septal nucleus, rostral part; MS, medial septal 
nucleus; VL, lateral ventricle.

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

79 

 

Supporting figure 2. Distribution pattern of MCH-immunoreactive fibers in the LS. 

Representative

 

coronal maps of MCH-

immunoreactive (MCH-ir) fibers throughout the anteroposterior extent of the male (

i

) and female LS (

ii

), as defined by nomenclature 

and cytoarchitectural boundaries designated by the 

Allen Reference Atlas

 (ARA; Dong, 2008). MCH-ir fibers were traced then 

mapped to corresponding 

ARA 

templates. Each panel includes the atlas level and stereotaxic coordinate inferred from Bregma (

assigned to that tissue. Only MCH-ir fibers within the LS were traced. ACB, nucleus accumbens; aco, anterior commissure; BST, bed 
nuclei of the stria terminalis; cc, corpus callosum; ccg, corpus callosum, genu; CP, caudoputamen; df, dorsal fornix; fa, anterior 
forceps; fi, fimbria; fx, columns of the fornix; isl, islands of Calleja; islm, major island of Calleja; LPO, lateral preoptic area; LSc, 
lateral septal nucleus, caudal part; LSr, lateral septal nucleus, rostral part; LSv, lateral septal nucleus, ventral part; MEPO, median 
preoptic nucleus; MS, medial septal nucleus; PVT, paraventricular thalamic nucleus; PT, paratenial nucleus; SF, septofimbrial 
nucleus; SH, septohippocampal nucleus; TRS, triangular nucleus of septum; TTd, taenia tecta, dorsal part; V3, third ventricle; VL, 
lateral ventricle. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

80 

 

Supporting figure 3. Maps of cells expressing 

Mchr1

 mRNA hybridization throughout the LS. 

Representative coronal maps of 

cells expressing 

Mchr1

 hybridization throughout the anteroposterior extent of the male (

i

) and female LS (

ii

), as defined by 

nomenclature and cytoarchitectural boundaries designated by the 

Allen Reference Atlas

 (ARA; Dong, 2008). 

Mchr1

-expressing cells 

were mapped to corresponding 

ARA 

templates. Each panel includes the atlas level and stereotaxic coordinate inferred from Bregma (

assigned to that tissue. Only 

Mchr1

 hybridization signals within the LS were analysed. ACB, nucleus accumbens; aco, anterior 

commissure; BAC, bed nucleus of the anterior commissure; BST, bed nuclei of the stria terminalis; cc, corpus callosum; ccg, corpus 
callosum, genu; CP, caudoputamen; fa, anterior forceps; fx, columns of the fornix; isl, islands of Calleja; islm, major island of Calleja; 
LPO, lateral preoptic area; LSc, lateral septal nucleus, caudal part; LSr, lateral septal nucleus, rostral part; LSv, lateral septal nucleus, 
ventral part; MEPO, median preoptic nucleus; MS, medial septal nucleus; NDB: diagonal band nucleus; SF, septofimbrial nucleus; 
SH, septohippocampal nucleus; TRS, triangular nucleus of septum; TTd, taenia tecta, dorsal part; V3, third ventricle; VL, lateral 
ventricle. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

81 

 

Supporting figure 4. Maps of MCHR1-immunoreactive cells throughout the LS. 

Representative coronal maps of MCHR1-

immunoreactive NeuN-positive (filled circle) or NeuN-negative cells (open circle) throughout the anteroposterior extent of the male 
(

i

) and female LS (

ii

) were mapped to 

Allen Reference Atlas

 (Dong, 2008)

 

templates according to the corresponding cytoarchitectural 

boundaries. Each panel includes the atlas level and stereotaxic coordinate inferred from Bregma (

) assigned to that tissue. Only 

MCHR1 cells within the LS were included. ACB, nucleus accumbens; aco, anterior commissure; BAC, bed nucleus of the anterior 
commissure; BST, bed nuclei of the stria terminalis; cc, corpus callosum; ccg, corpus callosum, genu; CP, caudoputamen; fa, anterior 
forceps; fx, columns of the fornix; isl, islands of Calleja; islm, major island of Calleja; LPO, lateral preoptic area; LSc, lateral septal 
nucleus, caudal part; LSr, lateral septal nucleus, rostral part; LSv, lateral septal nucleus, ventral part; MEPO, median preoptic nucleus; 
MS, medial septal nucleus; NDB: diagonal band nucleus; SF, septofimbrial nucleus; SH, septohippocampal nucleus; TRS, triangular 
nucleus of septum; TTd, taenia tecta, dorsal part; V3, third ventricle; VL, lateral ventricle. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

82 

 

Chapter 3: Melanin-concentrating hormone promotes feeding through the lateral septum

  

 

Mikayla A Payant, Anjali Shankhatheertha, Melissa J Chee 

Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada 

 

Author Contributions. 

Study conception and design: M.J.C. Cannula implantation: M.A.P, 

M.J.C, with assistance from A.S. Behavioural testing: M.A.P, A.S. Data analysis: M.A.P, A.S. 
Figure assembly: M.A.P. Initial manuscript draft, M.A.P. Manuscript editing, M.A.P, M.J.C. 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

83 

 

3.1  

Abstract 

Melanin-concentrating hormone (MCH) is a neuropeptide produced in the lateral hypothalamus 

and is well-established to regulate homeostatic and hedonic feeding behaviour. 

Intracerebroventricular administration of MCH promotes feeding in male, but not female 

rodents, but the specific brain regions underlying the orexigenic effects of MCH are not well-

defined. While some regions such as the nucleus accumbens and arcuate nucleus contribute to 

MCH-mediated feeding, the lateral septum (LS), a major target site of MCH neuron projections 

has not been examined. MCH can inhibit LS cells through the activation of the MCH receptor, 

MCHR1. Interestingly, LS inhibition stimulates feeding, thus it may mediate the orexigenic 

actions of MCH. To determine if MCH stimulates feeding via the LS, we bilaterally infused 

MCH into the LS of male and female mice and found that MCH elicited a rapid and long-lasting 

increase in consumption of standard chow and a palatable, high sugar, diet in both male and 

female mice. Importantly, infusing the MCHR1 antagonist TC-MCH 7c into the LS blocked the 

orexigenic actions of MCH. Although MCH and the LS can regulate food seeking and anxiety-

like behaviour, the orexigenic effects of MCH in the homecage did not translate to more time 

spent investigating a food reward in an anxiogenic environment. Taken together, these findings 

indicated that MCH can stimulate feeding in both male and female mice via the LS in a context-

dependent manner. 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

84 

 

3.2  

Introduction  

Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide known to regulate 

several behaviours including feeding, the first ascribed role of MCH (Qu et al., 1996). 

Mch

 

mRNA expression is elevated in obesity, and this increase may be linked with hunger, as fasting 

also promotes 

Mch

 expression (Qu et al., 1996). These transcriptional changes suggested that 

MCH promotes feeding, and indeed, MCH administration into the lateral (Qu et al., 1996; Kela 

et al., 2003) or third ventricles (Rossi et al., 1997; Duncan et al., 2005) acutely increased chow 

intake and sustained this orexigenic effect for up to six hours (Qu et al., 1996; Rossi et al., 1997; 

Kela et al., 2003). Moreover, the chronic intake of palatable high-fat diets also elevated the gene 

expression for 

Mch 

and the MCH receptor, 

Mchr1 

(Elliott et al., 2004). By contrast, 

Mch 

deletion (Pissios et al., 2008; Mul et al., 2011) or MCHR1 antagonism (Karlsson et al., 2012) 

attenuated the intrinsic reward properties of palatable food.  

MCH has been associated with multiple aspects of feeding behaviour but is most 

consistently involved in prolonging food bouts to promote overeating (Lee et al., 2021). MCH 

neurons are active during, but not preceding, food consumption (Subramanian et al., 2023), and 

while activating MCH neurons does not consistently stimulate feeding, activating MCH neurons 

during a food bout increases the amount of food consumed (Dilsiz et al., 2020). Consistently, 

MCHR1 deletion prevents cue induced overeating (Sherwood et al., 2015). This may be related 

to improved taste evaluation and the taste-independent reward associated with nutrient-dense 

foods. MCH infusion increased initial rate of licking a sweet, but not a bitter, solution suggesting 

that increased intake was based on positive taste (Baird et al., 2006). MCHR1 antagonism also 

reduced effort for a sucrose reward but not a saccharin reward (Karlsson et al., 2012) suggesting 

that MCH preferentially reinforces calorically-dense substances. Consistent with the role of 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

85 

 

MCH to prolong food bouts or extend ongoing feeding, the orexigenic effects of MCH were 

more robust in the dark than light cycle when rodents have already initiated feeding (Terrill et 

al., 2020). In addition, MCH may regulate context dependent, reward motivated food seeking 

(Subramanian et al., 2023) and given the involvement of MCH neurons in memory (Izawa et al., 

2019; Liu et al., 2022) and anxiety-like behaviour (He et al., 2022), it is plausible that MCH 

action at downstream sites could help integrate contextual information to determine when it is 

appropriate to prolong eating.  

The distributions of MCH projections and MCHR1 are widespread throughout the brain, 

but the brain regions underlying MCH-mediated feeding are not fully characterized. The 

orexigenic effects of MCH have largely been described in rats by infusing MCH into discrete 

brain regions, which included the arcuate nucleus (Abbott et al., 2003), paraventricular nucleus 

(Rossi et al., 1999; Abbott et al., 2003), the lateral hypothalamic area (Romero-Pico et al., 2018). 

Notably, the orexigenic effects of MCH are most prominently featured in the nucleus accumbens 

(Georgescu et al., 2005; Guesdon et al., 2009; Terrill et al., 2020), where MCH infusion 

promoted both homeostatic and hedonic feeding (Terrill et al., 2020). However, the orexigenic 

effects of MCH have only been reported in male subjects (Terrill et al., 2020), as MCH-mediated 

feeding is inhibited by estradiol in female subjects (Messina et al., 2006; Santollo and Eckel, 

2008). While MCH infusion in the nucleus accumbens consistently promoted feeding, activating 

accumbens-projecting MCH neurons has yielded mixed results (Noble et al., 2018; Terrill et al., 

2020). Chemogenetic activation of MCH neurons projecting to the nucleus accumbens increased 

chow intake in both the light and dark cycle (Terrill et al., 2020), however, in a different study, 

the same procedure had no effect on chow intake in the light cycle (Noble et al., 2018).  

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

86 

 

Given the relative paucity of targets supporting the orexigenic actions of MCH, we 

determined if the lateral septum (LS) is a target site of MCH action. The LS receives dense 

projections from MCH neurons (Chee et al., 2015) and expresses MCHR1 (Lembo et al., 1999; 

Saito et al., 2001; Chee et al., 2013; Diniz et al., 2020), and MCH can directly inhibit LS cells 

(Payant et al., 2023). LS inhibition stimulates feeding (Mitra et al., 2014; Gabriella et al., 2022), 

thus MCH action in the LS may promote feeding behaviour. We infused MCH bilaterally into 

the LS of male and female wildtype mice and determined home-cage feeding of regular chow or 

a highly palatable sugar pellet. Since the LS can regulate both feeding and anxiety-like behaviour 

(Bakshi et al., 2007; Xu et al., 2019), we also assessed whether food availability promoted entry 

into anxiogenic environments. We found that intra-LS MCH infusion significantly increased the 

consumption of chow or a palatable diet in both males and females, especially when MCH was 

infused directly above MCHR1-rich LS regions. However, when a food reward like a familiar 

palatable food pellet was placed in the center of an open field, which engenders avoidant 

anxiety-like behaviours, MCH did not facilitate food exploration in sated or fasted mice. Taken 

together, these findings highlight the LS as an important structure underlying MCH-induced 

feeding, but this orexigenic effect was present only in the habituated home-cage and not apparent 

in novel, anxiogenic environments. 

3.3  

Materials and Methods 

All procedures described herein were approved by the Carleton University Animal Care 

Committee in accordance with guidelines provided by the Canadian Council on Animal Care. All 

C57BL/6J

 

wildtype mice (stock 000664; Jackson Laboratory, Bar Harbor, ME) were bred in-

house, maintained on a 12-hour light-dark cycle (22

24 °C; 40

60% humidity), and given 

ad 

libitum

 access to regular chow (2.9 kcal/g; Teklad Global Diets 2014, Envigo, Mississauga, 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

87 

 

Canada) or 60% high dextrose diet (3.6 kcal/g; Teklad Custom Diet, TD.05256, Envigo, 

Mississauga, Canada) and water. 

3.3.1 

Cannula implantation.

 Male and female mice (8

14 weeks old) received a 

subcutaneous (sc) injection of carprofen (20 mg/kg; Zoetis, Kirkland, QC, Canada) analgesia 30 

minutes prior to the start of surgery. They were then anesthetized with isoflurane, secured in a 

stereotaxic apparatus (David Kopf Instruments, Tujunga, CA), and their incision sites were 

sterilized before making a rostrocaudal incision to expose the skull. The skull surface was 

cleaned and air-dried, and the head position was leveled within the stereotaxic frame using 

bregma and lambda coordinates read from the skull. 

 

A bilateral 26 gauge stainless steel guide cannula (C235DCS-5/SPC, Protech 

International, Boerne, TX) was lowered into the central LS (in mm; anteroposterior (AP) +0.7, 

mediolateral (ML) 

0.4, dorsoventral (DV) −3.3;

 Paxinos and Franklin, 2001; Dong, 2008) or 

lateral LS (AP +0.7, ML 

0.6, DV −3.3

). Dental cement, formed by mixing Jet denture repair 

powder (1230P1, Lang Dental Manufacturing, Wheeling, IL) with Jet self-curing acrylic resin 

liquid (1404CLR, Lang Dental Manufacturing), was applied to secure the cannula pedestal to the 

top of the skull. The skin at the incision sites was pulled around the implant and sutured around 

the implant to minimize skull exposure. A mating dummy cannula (C235GS-5/SPC, Protech 

International) was inserted in the guide cannula and secured with a dust cap (303DC/1, Protech 

International) while the animal recovered in its home-cage for at least two weeks. 

3.3.2

 Intra-LS infusion. 

Animals were habituated to handling for 10 consecutive days (5 

min per day). An internal cannula with a 0.25 mm projection at the tip of the guide cannula 

(C235IS-5/SPC, Protech International) was inserted into the guide cannula. Thin-walled PE50 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

88 

 

tubing (C232CT, Protech International) was fitted onto each injector, and the infusate (1 μl total 

volume per side) was delivered over 4 min and then allowed to penetrate the target region for 2 

min before the tubing was removed and attached to the other side of the bilateral cannula.  MCH 

(1 μg; 

4025037

, Bachem, Torrence, CA), or the MCHR1 antagonist TC-

MCH 7c (1 μg; 

4365

Tocris, Toronto, Canada) was delivered via a sterile vehicle of artificial cerebrospinal fluid 

(aCSF) comprising (in mM) 148 NaCl, 3 KCl, 1.4 CaCl

2

, 0.8 MgCl

2

, 0.8 Na

2

HPO

4

, 0.2 NaH

2

PO

4

 

prepared as described (ALZET Osmotic Pumps).  In experiments where MCH was applied 

following MCHR1 antagonist pretreatment, TC-

MCH 7c (0.5 μg) was infused first and a 

solution comprising 1 μg MCH and 0.5 µg TC

-MCH 7c was infused 5 min later.  

3.3.3

 Food intake. 

A chow or 60% high dextrose food pellet was presented on the floor 

of the home-cage. The weight of the food remaining was determined every hour for four hours. 

Infusions began at ZT 1

3 immediately prior to the start of the 4-h feeding period. Ramekins 

with regular chow and 60% high dextrose diet were placed on the floor of the home cage 

overnight and intake of each diet was measured to determine food preference.  

3.3.4

 Locomotor activity. 

Micromax infrared beam-break system (Omnitech, Columbus, 

OH) was used to determine homecage ambulatory activity by recording the total number of beam 

breaks over four hours following infusion (ZT1

3).  

3.3.5 

Open field movement. 

Mice were habituated to an opaque open field arena (45 x 45 

x 45 cm) at least 3 times prior to testing. On the day of testing, sated or fasted mice where food 

was removed from their homecage for 6 or 16 h, respectively were

 

habituated to

 

the testing room 

for

 

approximately one hour. Infusions began at ZT6

11 in the sated condition and ZT1

4 in the 

fasted condition, 30 min prior to testing. Mice were then placed into an opaque open field box 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

89 

 

with a piece of 60% high dextrose diet affixed to the middle of the arena and allowed to explore 

the arena for 20 min. Movement in the open field arena was recorded with an overhead camera 

(Hue HD camera, Hue, London, UK) and tracked using ANY-maze (Stoelting Co, Wood Dale, 

IL). The open field arena was divided into the outside perimeter and center area (22.5 x 22.5 

cm). The amount of time the mouse spent in each zone was based on tracking the center-point of 

the mouse. Plots of animal tracking were generated in ANY-maze and exported as PNG files. 

3.3.6

 Implant site validation. 

At the end of the study, mice received an infusion of 0.5% 

Evans Blue dye in saline (1 µl; MilliporeSigma, Burlington, MA) and were euthanized 30 min 

later. Mice were anesthetized with chloral hydrate (700 mg/kg; MilliporeSigma), decapitated, 

and their brains were rapidly extracted from the skull and then post-fixed in 10% formalin 

(VWR, Radnor, PA) for at least 24 h. The brains were cryoprotected in phosphate buffered saline 

(PBS) containing 20% sucrose and 0.05% sodium azide (24 hr, 4

C) and sliced into five series of 

30 µm coronal sections using a freezing microtome (Spencer Lens Co., Buffalo, NY). Brightfield 

images of LS-containing brain slices were acquired using a Nikon Ti2-E inverted microscope 

(Nikon Instruments Inc., Mississauga, Canada) and processed using NIS-Elements Imaging 

Software (Nikon). Cases where the bilateral cannula landed outside the boundaries of the LS, as 

defined by the Allen Reference Atlas (Dong, 2008), were excluded from analysis.

  

3.3.7

 Experimental design and statistical analyses. 

Experiments were conducted using a 

within-group design where mice were tested in the paradigm two to four times, once for each 

drug condition, in a counterbalanced design. The first hour of food intake was analyzed using a 

two-tailed, paired 

t

-test. Cumulative food intake, locomotor activity, and open field movement 

were compared by two-way repeated measures ANOVA with Bonferroni post-hoc testing. A 

three-way ANOVA was used to compare responses between male and female mice. In some 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

90 

 

cases, a mixed-effect model was used to account for missing datapoints. Results were considered 

statistically significant at 

p

 < 0.05. All data graphs were generated using Prism 9 (GraphPad 

Software, San Diego, CA). Manuscript figures were assembled in Adobe Illustrator 2024 (Adobe 

Inc., San Jose, CA).

 

3.4  

Results 

3.4.1   MCH infusion into the LS increased chow intake in male and female mice  

To determine if the LS mediated the orexigenic actions of MCH, we bilaterally infused MCH (1 

µg) into the center of the rostral LS (LSr; 

Figure 1A

) of sated male and female mice and 

measured chow intake over a 4-h period. There was an increase in chow intake within the first 

hour of MCH infusion (vehicle: 0.06 

 0.01 g; MCH: 0.11 

 0.01 g; 

t

(10) = 2.93, 

p

 = 0.015) in 

male mice leading to a main effect of MCH that more than doubled cumulative intake over 4 h 

(F(1, 10) = 13.74; 

p

 = 0.004) and reflected a significant interaction of MCH infusion on chow 

intake over time (F(4, 40) = 11.46; p < 0.0001; 

Figure 1B

). In female mice, MCH infusion into 

the LS did not significantly increase chow intake in the first hour (vehicle: 0.09 

 0.03 g; MCH: 

0.19 

 0.07 g; 

t

(7) = 1.46, 

p

 = 0.189), and while we did not detect a significant main effect of 

MCH (F(1, 7) = 4.75; 

p

 = 0.066), there was a significant interaction of MCH over time, as MCH 

increased chow feeding (F(4, 28) = 5.49; 

p

 = 0.002; 

Figure 1C

). The orexigenic effect on MCH 

was comparable between male and female mice, as there was no main effect of sex (F(1, 85) = 

2.27; 

p

 = 0.136) and no interaction between sex and MCH infusion (F(1, 85) = 0.31; 

p

 = 0.581).  

To determine if this orexigenic response was mediated by the activation of MCHR1 

receptors in the LS, we co-infused MCH with the MCHR1 antagonist TC-MCH 7c (1 µg). 

MCHR1 antagonism has been reported to suppress feeding (Ito et al., 2010), but TC-MCH 7c 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

91 

 

infusion into the LS alone had no main effect on feeding in male (F(1, 10) = 0.70; 

p

 = 0.424) or 

female mice (F(1, 7) = 0.36; 

p

 = 0.0567) nor a significant interaction of TC-MCH 7c over time in 

male (F(4, 40) = 1.62; 

p

 = 0.187) or female mice (F(4, 28) = 0.62; 

p

 = 0.653) when compared to 

vehicle infusion. TC-MCH 7c infusion suppressed MCH-mediated feeding, as MCH infusion in 

the presence of TC-MCH 7c resulted in a similar amount of cumulative feeding in male (F(1, 10) 

= 3,15; 

p

 = 0.11) and female mice (F(1, 7) = 2.54; 

p

 = 0.155). TC-MCH 7c-mediated suppression 

was sustained over time, as chow intake remained at a similar level over time in both male (F(4, 

40) = 2.56; 

p

 = 0.053; 

Figure 1D

) and female mice (F(4, 28) = 1.63; 

p

 = 0.196; 

Figure 1E

) as 

when the LS was treated with TC-MCH 7c only.  

We recently determined that MCHR1 expression concentrated along the lateral LSr 

border (Payant et al., 2023), thus we performed targeted infusions toward the laterally-distributed 

MCHR1-expressing LS cells (

Figure 1F

). MCH infusion into the lateral LSr significantly 

increased feeding within the first hour in both male (vehicle: 0.15 

 0.03 g; MCH: 0.28 

 0.03 g; 

t

(5) = 3.24, 

p

 = 0.023) and female mice (vehicle: 0.11 

 0.02 g; MCH: 0.22 

 0.06 g; 

t

(7) = 2.48, 

p

 = 0.042). There was a main effect of MCH infusion on cumulative chow intake over four hours 

in both male (F(1, 5) = 10.38; 

p

 = 0.023; 

Figure 1G

) and female mice (F(1, 7) = 9.19; 

p

 = 0.019; 

Figure 1H

). MCH produced a similar 2-fold increase of chow intake, which was apparent within 

2 h of MCH infusion into the lateral LS of male mice (F(4, 20) = 8.13; 

p

 = 0.0005; 

Figure 1G

and just 1 h in female mice (F(4, 28) = 3.99; 

p

 = 0.011; 

Figure 1H

). Although MCH infusion 

doubled chow intake relative to vehicle in both male and female mice, there was a main effect of 

sex (F(1, 60 = 7.18; 

p

 = 0.010) and an interaction between sex and MCH infusion which 

produced a larger increase in chow consumption in male mice (F(1, 60) = 6.72; 

p

 = 0.012). This 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

92 

 

suggested that discrete targeting of MCHR1-rich regions in the lateral LS replicated the 

orexigenic effects of MCH in the LS.  

This orexigenic effect was partially blocked by an MCHR1 antagonist in males resulting 

in a significant main effect (F(1, 5) = 10.45; 

p

 = 0.023) but no interaction of MCH with TC-

MCH 7c over time (F(4, 20) = 2.58; 

p

 = 0.069; 

Figure 1I

). MCH-mediated feeding was fully 

blocked in females (F(1, 7) = 2.15; 

p

 = 0.19) and remained at similar levels as TC-MCH 7c alone 

(F(4, 28) = 1.46; 

p

 = 0.241; 

Figure 1J

). These results indicated that MCH administration in the 

LS promoted feeding in both male and in female mice.  

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

93 

 

 

Figure 1. Intra-LS MCH infusion increased chow feeding in male and female mice. 

Schematic of central LS infusions with bilateral cannulas implanted 0.8 mm apart (

top

). 

Representative image of infusion spread following dye infusion (

bottom

A

). Cumulative chow 

intake of aCSF vehicle (1 µl) and MCH (1 µg/µl; 

B

C

) or TC-MCH 7c (1 µg/µl) and MCH in 

the presence of TC-MCH 7c (1 µg/µl each; 

D

E

) into the central LS of male and female mice. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

94 

 

Schematic of lateral LS infusions with bilateral cannulas implanted 1.2 mm apart (

top

). 

Representative infusion spread following dye infusion (

bottom

F

). Cumulative chow intake of 

aCSF vehicle and MCH (

G

H

), or TC-MCH 7c (1 µg/µl) and MCH with TC-MCH 7c (1 µg/µl 

each; 

I

J

) into the lateral LS of male and female mice. Scale bar: 200 µm (

A

F

). Significance (

< 0.05) was determined using a two-way ANOVA with Bonferroni post- comparison of drug 
conditions at each timepoint: **, 

p

 < 0.01; ***, 

p

 < 0.001; ****, 

p

 < 0.0001. ACB, nucleus 

accumbens; cc, corpus callosum; LS, lateral septum; VL, lateral ventricle. 

 

3.4.2   MCH infusion into the LS increased intake of a palatable diet in male and female 

mice 

To determine if MCH also promoted hedonic feeding through the LS, we measured the intake of 

a palatable, high dextrose diet (HDx) over four hours in sated mice following MCH infusion into 

the central or lateral LS. Mice preferentially consumed HDx (11.3 ± 1.7 kcal/day) over chow 

(5.7 ± 1.2 kcal/day) thus confirming the palatability of the HDx. Both male and female mice 

displayed robust hyperphagia when given access to HDx relative to chow, but when delivered in 

the central LS, MCH further increased HDx intake in male mice (F(1, 10) = 5.80; 

p

 = 0.037) 

over time (F(4, 40) = 3.05; 

p

 = 0.028; 

Figure 2A

). Male mice consumed more of the HDx 

overall (F(1. 85) = 16.88; 

p

 < 0.0001), but there was no significant interaction between sex and 

MCH infusion (F(1, 85) = 3.44; 

p

 = 0.067). The orexigenic effect of MCH was blocked by co-

infusion of TC-MCH 7c (F(1, 10) = 3.08; 

p

 = 0.110) and there was a small decrease in feeding 

over time compared to TC-MCH 7c alone (F(4, 40) = 2.72; 

p

 = 0.043; 

Figure 2B

). By contrast, 

MCH infusion into the central LS did not further increase HDx intake in female mice (F(1, 7) = 

0.024; 

p

 = 0.880) nor have an effect over time (F(4, 28) = 0.38; 

p

 = 0.819; 

Figure 2C

), and there 

were also no differences in HDx intake following the co-infusion of MCH with TC-MCH 7c 

(F(1, 7) = 0.35; 

p

 = 0.571; MCH x time: F(4, 28) = 0.43; 

p

 = 0.785).  

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

95 

 

When MCH was infused into the lateral LSr, it increased HDx intake in both sexes, and 

this orexigenic effect was abolished following TC-MCH 7c co-infusion. In males, there was no 

main effect of MCH infusion (F(1, 6) = 3.59; 

p

 = 0.107), but MCH increased HDx intake over 

time and within 4 h (F(4, 23) = 4.54; 

p

 = 0.008; 

Figure 2E

). This MCH-mediated feeding in the 

lateral LSr was blocked by TC-MCH 7c co-infusion (F(1, 5) = 5,17; 

p

 = 0.072; MCH x time: 

F(4, 20) = 2.83; 

p

 = 0.052; 

Figure 2F

). Interestingly, there was a robust increase in HDx intake 

following MCH infusion into the lateral LSr of female mice (F(1, 7) = 8.00; 

p

 = 0.025) that was 

apparent within an hour of MCH infusion (F(4, 28) = 4.54; 

p

 = 0.006; 

Figure 2G

). This 

orexigenic MCH effect was blocked by co-infusion of TC-MCH 7c (F(1, 7) = 1.77; 

p

 = 0.225; 

MCH x time: F(4, 28) = 1.69; 

p

 = 0.180; 

Figure 2H

). While male mice consumed more of the 

HDx (F(1, 129) = 18.25; 

p

 < 0.0001), there was no interaction of sex with MCH infusion (F(1, 

129) = 0.11; 

p

 = 0.741). These findings indicated that MCH further increased feeding even when 

baseline feeding is elevated, but this effect was stronger in female mice when directed towards 

the lateral LSr.  

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

96 

 

 

Figure 2. MCH infusion into the LS increased palatable diet feeding. 

Cumulative high 

dextrose diet (HDx) intake following infusion of vehicle (1 µl) and MCH (1 µg/µl) or TC-MCH 
7c (1 µg/µl) and MCH with TC-MCH 7c (1 µg/µl each) into the central LS of male (

A

B

) and 

female (

C

D

) mice, and into the lateral LS of male (

E

F

) and female mice (

G

H

). Significance 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

97 

 

(

< 0.05) was determined using a two-way ANOVA with Bonferroni post- comparison of drug 

conditions at each timepoint: **, 

p

 < 0.01; ***, 

p

 < 0.001; ****, 

p

 < 0.0001. 

 

3.4.3   MCH in the lateral LS of male mice increased locomotor activity  

While MCH increased food intake when infused throughout the LS, we did not detect differences 

in ambulatory or locomotor activity during the feeding period in male mice when MCH was 

administered alone (F(1, 10) = 0.06; 

p

 = 0.806; MCH x time: F(3, 30) = 0.29; 

p

 = 0.830; 

Figure 

3A

) or in the presence of TC-MCH 7c (F(1, 10) = 0.07; 

p

 = 0.802; MCH x time: F(3, 30) = 1.35; 

p

 = 0.278; 

Figure 3B

). Similarly, there were no locomotor activity differences following MCH 

infusion alone (F(1, 7) = 0.07; 

p

 = 0.801; MCH x time: F(3, 21) = 1.27; 

p

 = 0.310; 

Figure 3C

) or 

when co-infused with TC-MCH 7c (F(1, 7) = 1.16; 

p

 = 0.317; MCH x time: F(3, 21) = 2.89; 

p

 = 

0.060; 

Figure 3D

). 

 

 

However, when MCH was infused over the lateral LSr, there was an overall increase in 

ambulatory activity of male mice (F(1, 5) = 9.71; 

p

 = 0.026). This MCH-mediated hyperactivity 

in male mice was most prominent within the first hour following MCH infusion and decreased 

over time (F(5, 25) = 4.08; 

p

 = 0.008; 

Figure 3E

). The increased ambulatory activity was 

abolished by TC-MCH 7c treatment (F(1, 5) = 0.24; 

p

 = 0.643; MCH x time: F(5, 25) = 1.34; 

p

 = 

0.279; 

Figure 3F

). No differences in ambulatory activity were seen in female mice with MCH 

treatment (F(1, 7) = 0.86; 

p

 = 0.383; MCH x time: (F(5, 35) = 0.60; 

p

 = 0.701; 

Figure 3G

) nor 

TC-MCH 7c treatment (F(1, 7) = 3.97; 

p

 = 0.087; MCH x time: F(5, 35) = 2.11; 

p

 = 0.088; 

Figure 3H

). Although the locomotor effect was only present in males, there was no significant 

interaction between sex and MCH infusion when compared directly (F(1, 72) = 0.255; 

p

 = 

0.615). 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

98 

 

 

Figure 3. MCH infusion into lateral LS increased locomotor activity in male mice. 

Total 

ambulations

 

at each hour following infusion of vehicle (1 µl) and MCH (1 µg/µl) or TC-MCH 7c 

(1 µg/µl) and MCH with TC-MCH 7c (1 µg/µl each) into the central LS of male (

A

B

) and 

female (

C

D

) mice, and into the lateral LS of male (

E

F

) and female mice (

G

H

). Significance 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

99 

 

(

< 0.05) was determined using a two-way ANOVA with Bonferroni post- comparison of drug 

conditions at each timepoint: **, 

p

 < 0.01; ***, 

p

 < 0.001; ****, 

p

 < 0.0001.

 

 

3.4.4   LS MCH infusion did not alter food seeking in an anxiogenic environment  

As MCH stimulated feeding in the absence of increasing ambulatory activity, it is unlikely that 

the hyperactivity of male mice treated with MCH in the lateral LSr was directly related to 

feeding. We hypothesized that the observed hyperactivity was related to an anxiogenic and/or 

stress response, which are LS- associated functions (Bakshi et al., 2007; Xu et al., 2019)

Furthermore, as MCH-mediated feeding may be context-dependent (Subramanian et al., 2023), 

and MCH may increase feeding and locomotor activity in the home-cage environment, we 

determined whether MCH would alter food-seeking behaviour when placed in an anxiogenic 

environment. We infused MCH into sated mice and placed them into an open field with a HDx 

food reward placed in the center of the open field to determine if the orexigenic effect of MCH in 

the LS could overcome their native fear of travelling into the center.  

While MCH infusion can drive feeding in sated animals in a non-stressful environment, it 

was not sufficient to overcome anxiety in order to increase time spent in the center of the open 

field when infused into the central (F(1, 10) = 0.27; 

p

 = 0.613; 

Figure 4A

) or lateral LS of male 

and female mice (F(1, 7) = 2.2; 

p

 = 0.182 

Figure 4B

). 

Being in a state of negative energy balance is an endogenous motivator to overcome 

anxiogenesis and promote food approach behaviours, thus fasted mice will spend more time 

exploring food placed in the center of an open field (Lockie et al., 2017). We thus determined if 

MCH infusion in fasted mice would promote food approach in the open field. As anticipated, 

fasted animals spent more overall time in the center of the open field investigating the food 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

100 

 

reward. However, MCH did not further increase the amount of time male and female mice spent 

in the center of the open field following infusion into the central (F(1, 10) = 1.1; 

p

 = 0.324; 

Figure 4C

) and lateral LS (F(1, 7) = 0.92; 

p

 = 0.370; 

Figure 4D

). In sum, the orexigenic effect 

of MCH in the LS may be restricted to non-stressful environments.   

 

Figure 4. MCH infusion into the LS did not alter food investigation in open field. 

Representative plots of animal movement in the open field and time spent in the center (red 
outlined area) in sated and fasted animals (

top

). Time spent in center of open field following 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

101 

 

aCSF vehicle (1 μl) or MCH (1 μg/μl) infusion into the central LS of male and female mice that 

were sated (

A

) or fasted (

B

), and into the lateral LS of mice that were sated (

C

) or fasted (

D

). 

Significance (

p

 < 0.05) was determined using a two-way ANOVA with Bonferroni post-hoc 

comparisons between drug conditions.  

 

3.5  

Discussion 

Intracerebroventricular administration of MCH elicited robust feeding effects (Qu et al., 1996; 

Rossi et al., 1997; Kela et al., 2003), but few brain regions have been identified to support the 

orexigenic effects of MCH. We showed here that the LS is an important region underlying 

MCH-mediated feeding. MCH infusion into the LS, especially when directed over the lateral LSr 

where MCHR1-expressing cells were concentrated (Payant et al., 2023), increased feeding in 

both male and female mice. However, the orexigenic effects of MCH when the mouse is in its 

habituated homecage was abolished when placed in an anxiogenic environment, even when the 

mouse was hungry.  

The LS is a novel brain region underlying the orexigenic effect of MCH. Acute MCH 

infusion into the LS increased consumption of a standard chow or palatable, high-dextrose, diet. 

MCH induced feeding within the first hour and persisted over four hours which corresponded 

with the timeline of intracerebroventricular administration of MCH (Qu et al., 1996; Rossi et al., 

1997; Kela et al., 2003). MCH infusion into both the central and lateral LS promoted feeding, but 

consistent with our recent findings showing the concentration of MCHR1 expression towards the 

lateral LS (Payant et al., 2023), we found that directing MCH towards the lateral LS elicited a 

more robust orexigenic effect of MCH. The properties of MCH-mediated feeding in the LS are 

unique from that in the hypothalamus (Rossi et al., 1999; Abbott et al., 2003; Al-Massadi et al., 

2019) or nucleus accumbens (Georgescu et al., 2005; Terrill et al., 2020), and it is noteworthy 

that MCH initiated feeding even during the light cycle when animals were sated. This is in 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

102 

 

contrast to orexigenic MCH actions in the nucleus accumbens that enhanced chow and sucrose 

intake in the dark cycle when mice are naturally-feeding but increased only sucrose intake within 

a 4 hour period in the light cycle (Georgescu et al., 2005; Terrill et al., 2020).  

The orexigenic effect of MCH in the LS was uniquely prominent in both male and female 

mice. Prior studies reported MCH-mediated feeding primarily in males (Terrill et al., 2020), as 

elevated levels of estrogen in females blunted the orexigenic effect of MCH, and they are 

restored in ovariectomized females (Messina et al., 2006; Santollo and Eckel, 2008). Estradiol 

treatment decreases the efficacy of MCH-induced feeding (Messina et al., 2006; Santollo and 

Eckel, 2008) by reducing the number of MCH cells and downregulating MCHR1 expression in 

the hypothalamus (Santollo and Eckel, 2013). Although the LS expresses estrogen receptors 

(Hasunuma et al., 2023), estrogen does not appear to strongly regulate MCH effects in this 

region. There was a subtle sex difference in MCH-mediated chow consumption whereby MCH 

infused into the lateral LS of females produced less hyperphagia than in males. However, MCH 

doubled chow intake in both males and females, therefore the difference in consumption may be 

related to the higher baseline feeding in males. The distribution and amount of 

Mchr1 

mRNA or 

MCHR1 expression is comparable in the LS of male and female mice, and there were no 

discernable differences in the magnitude of MCH-mediated inhibition in the LS (Payant et al., 

2023). The comparable effects of MCH-mediated feeding in the LS of male and female mice 

were thus consistent with the distribution and functional activation of MCHR1 in the LS.  

The orexigenic effect of MCH in LS was context-dependent. MCH-mediated feeding was 

prominent in the homecage but did not extend to food-seeking in an anxiogenic environment. In 

the wild, feeding and anxiety are intricately related, as anxiety may suppress feeding but a 

hungry animal may take risks to feed even in anxiogenic, suboptimal environments. We 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

103 

 

observed a mild increase in locomotor activity in male mice when MCH was infused into the 

lateral LS. Since this effect was absent in the other groups exhibiting feeding effects, it appeared 

to be unrelated to feeding. As such, we hypothesized that the hyperactivity could be related to an 

anxiolytic or exploratory behavioural outcome. LS inhibition often suppresses anxiety-like 

behaviours (Pesold and Treit, 1996; Wang et al., 2023) and a switch to exploratory behaviour in 

the face of risk (Zhong et al., 2022). Therefore, we determined if MCH infusion into the LS may 

increase time spent investigating a food reward placed in the center of an open field. However, in 

sated or fasted mice, MCH did not increase the amount of time mice spent in the center of the 

open field. While MCH in the LS did not mediate the interaction between feeding and anxiety, it 

may still extend beyond homecage feeding to other facets of feeding-related behaviour. The LS 

receives strong input from the hippocampus (Risold and Swanson, 1997), which promotes spatial 

food memory (Decarie-Spain et al., 2022), and LS activation shortens the latency to food 

approach (Chen et al., 2022). As the infusion of MCH or activation of MCH terminals in the LS 

enhanced spatial memory by potentiating hippocampal inputs (Liu et al., 2022), future studies 

may evaluate whether MCH acts in the LS to regulate spatial memory-dependent food-seeking.  

The magnitude of the orexigenic effect with intra-LS MCH infusion was larger with 

chow feeding than palatable diet feeding. This result was unexpected because MCH is thought to 

reinforce the consumption of calorically dense solutions (Duncan et al., 2005; Karlsson et al., 

2012) by increasing their hedonic value (Baird et al., 2006; Lopez et al., 2011) and by recruiting 

post-oral processes that detect and reinforce the consumption of nutrient-dense substances 

(Domingos et al., 2013). However, this is often shown through the comparison of sweetened 

solutions in the presence and absence of calories, for example via sucrose and sucralose, 

respectively, and therefore differential outcomes could be expected when comparing two 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

104 

 

nutrient-containing solid diets. Furthermore, as baseline feeding was greatly elevated when given 

access to HDx, ceiling levels of baseline palatable HDx feeding would mask any orexigenic 

effects of MCH, such as that seen with standard chow.  

Chronic MCHR1 antagonism can suppress feeding (Shearman et al., 2003; Ito et al., 

2010; Kawata et al., 2017), but acute MCHR1 antagonism has no effect (Shearman et al., 2003) 

or may decrease feeding in the dark cycle on feeding (Georgescu et al., 2005). Unsurprisingly, 

we did not see any reductions in feeding within four hours of LS infusion during the light cycle. 

We noted that administration of TC-MCH 7c with MCH did not fully block the effects of MCH 

in males. It is not clear if this is due to the timing or insufficiency of MCHR1 antagonism. We 

administered TC-MCH 7c a few minutes prior to MCH infusion and this may have been 

insufficient time for the antagonist to block MCHR1 prior to the co-infusion of TC-MCH 7c with 

MCH. Additionally, TC-MCH 7c may not fully block the cellular effects of MCH, as TC-MCH 

7c pretreatment at LS cells only partly blocked the inhibitory effects of MCH (Liu et al., 2022). 

In conclusion, MCH infusion into the LS promoted hyperphagia in male and female mice 

and these results implicated the LS as an important structure underlying MCH-mediated 

behaviour. As prior studies were conducted in rat, cross species differences hindered our ability 

to assess the relative contribution of the LS to MCH-mediated feeding compared to other brain 

targets. However, MCH uniquely initiated feeding via the LS, and as LS inhibition can stimulate 

feeding (Mitra et al., 2014; Gabriella et al., 2022), and MCH inhibits LS cells (Payant et al., 

2023), the MCH system is an emerging regulator of LS-mediated feeding. 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

105 

 

3.6  

References

 

Abbott CR, Kennedy AR, Wren AM, Rossi M, Murphy KG, Seal LJ, Todd JF, Ghatei MA, 

Small CJ, Bloom SR (2003) Identification of hypothalamic nuclei involved in the orexigenic 
effect of melanin-concentrating hormone. Endocrinology 144:3943-3949. 

Al-Massadi O et al. (2019) MCH Regulates SIRT1/FoxO1 and Reduces POMC Neuronal 

Activity to Induce Hyperphagia, Adiposity, and Glucose Intolerance. Diabetes 68:2210-2222. 

Baird JP, Rios C, Gray NE, Walsh CE, Fischer SG, Pecora AL (2006) Effects of melanin-

concentrating hormone on licking microstructure and brief-access taste responses. Am J 
Physiol Regul Integr Comp Physiol 291:R1265-1274. 

Bakshi VP, Newman SM, Smith-Roe S, Jochman KA, Kalin NH (2007) Stimulation of lateral 

septum CRF2 receptors promotes anorexia and stress-like behaviors: functional homology to 
CRF1 receptors in basolateral amygdala. J Neurosci 27:10568-10577. 

Chee MJ, Pissios P, Maratos-Flier E (2013) Neurochemical characterization of neurons 

expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. J Comp 
Neurol 521:2208-2234. 

Chee MJ, Arrigoni E, Maratos-Flier E (2015) Melanin-concentrating hormone neurons release 

glutamate for feedforward inhibition of the lateral septum. J Neurosci 35:3644-3651. 

Chen Z, Chen G, Zhong J, Jiang S, Lai S, Xu H, Deng X, Li F, Lu S, Zhou K, Li C, Liu Z, Zhang 

X, Zhu Y (2022) A circuit from lateral septum neurotensin neurons to tuberal nucleus controls 
hedonic feeding. Mol Psychiatry 27:4843-4860. 

Decarie-Spain L, Liu CM, Lauer LT, Subramanian K, Bashaw AG, Klug ME, Gianatiempo IH, 

Suarez AN, Noble EE, Donohue KN, Cortella AM, Hahn JD, Davis EA, Kanoski SE (2022) 
Ventral hippocampus-lateral septum circuitry promotes foraging-related memory. Cell Rep 
40:111402. 

Dilsiz P, Aklan I, Sayar Atasoy N, Yavuz Y, Filiz G, Koksalar F, Ates T, Oncul M, Coban I, 

Ates Oz E, Cebecioglu U, Alp MI, Yilmaz B, Atasoy D (2020) MCH Neuron Activity Is 
Sufficient for Reward and Reinforces Feeding. Neuroendocrinology 110:258-270. 

Diniz GB, Battagello DS, Klein MO, Bono BSM, Ferreira JGP, Motta-Teixeira LC, Duarte JCG, 

Presse F, Nahon JL, Adamantidis A, Chee MJ, Sita LV, Bittencourt JC (2020) Ciliary 
melanin-concentrating hormone receptor 1 (MCHR1) is widely distributed in the murine CNS 
in a sex-independent manner. J Neurosci Res 98:2045-2071. 

Domingos AI, Sordillo A, Dietrich MO, Liu ZW, Tellez LA, Vaynshteyn J, Ferreira JG, 

Ekstrand MI, Horvath TL, de Araujo IE, Friedman JM (2013) Hypothalamic melanin 
concentrating hormone neurons communicate the nutrient value of sugar. Elife 2:e01462. 

Dong H (2008) The Allen reference atlas: A digital color brain atlas of the C57BL/6J male 

mouse. . Hoboken, NJ: John Wiley & Sons. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

106 

 

Duncan EA, Proulx K, Woods SC (2005) Central administration of melanin-concentrating 

hormone increases alcohol and sucrose/quinine intake in rats. Alcohol Clin Exp Res 29:958-
964. 

Elliott JC, Harrold JA, Brodin P, Enquist K, Backman A, Bystrom M, Lindgren K, King P, 

Williams G (2004) Increases in melanin-concentrating hormone and MCH receptor levels in 
the hypothalamus of dietary-obese rats. Brain Res Mol Brain Res 128:150-159. 

Gabriella I, Tseng A, Sanchez KO, Shah H, Stanley BG (2022) Stimulation of GABA Receptors 

in the Lateral Septum Rapidly Elicits Food Intake and Mediates Natural Feeding. Brain Sci 
12. 

Georgescu D, Sears RM, Hommel JD, Barrot M, Bolanos CA, Marsh DJ, Bednarek MA, Bibb 

JA, Maratos-Flier E, Nestler EJ, DiLeone RJ (2005) The hypothalamic neuropeptide melanin-
concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and 
forced-swim performance. J Neurosci 25:2933-2940. 

Guesdon B, Paradis E, Samson P, Richard D (2009) Effects of intracerebroventricular and intra-

accumbens melanin-concentrating hormone agonism on food intake and energy expenditure. 
Am J Physiol Regul Integr Comp Physiol 296:R469-475. 

Hasunuma K, Murakawa T, Takenawa S, Mitsui K, Hatsukano T, Sano K, Nakata M, Ogawa S 

(2023) Estrogen Receptor beta in the Lateral Septum Mediates Estrogen Regulation of Social 
Anxiety-like Behavior in Male Mice. Neuroscience 537:126-140. 

He X, Li Y, Zhang N, Huang J, Ming X, Guo R, Hu Y, Ji P, Guo F (2022) Melanin-

concentrating hormone promotes anxiety and intestinal dysfunction via basolateral amygdala 
in mice. Front Pharmacol 13:906057. 

Ito M, Ishihara A, Gomori A, Matsushita H, Ito M, Metzger JM, Marsh DJ, Haga Y, Iwaasa H, 

Tokita S, Takenaga N, Sato N, MacNeil DJ, Moriya M, Kanatani A (2010) Mechanism of the 
anti-obesity effects induced by a novel melanin-concentrating hormone 1-receptor antagonist 
in mice. Br J Pharmacol 159:374-383. 

Izawa S, Chowdhury S, Miyazaki T, Mukai Y, Ono D, Inoue R, Ohmura Y, Mizoguchi H, 

Kimura K, Yoshioka M, Terao A, Kilduff TS, Yamanaka A (2019) REM sleep-active MCH 
neurons are involved in forgetting hippocampus-dependent memories. Science 365:1308-
1313. 

Karlsson C, Zook M, Ciccocioppo R, Gehlert DR, Thorsell A, Heilig M, Cippitelli A (2012) 

Melanin-concentrating hormone receptor 1 (MCH1-R) antagonism: reduced appetite for 
calories and suppression of addictive-like behaviors. Pharmacol Biochem Behav 102:400-406. 

Kawata Y, Okuda S, Hotta N, Igawa H, Takahashi M, Ikoma M, Kasai S, Ando A, Satomi Y, 

Nishida M, Nakayama M, Yamamoto S, Nagisa Y, Takekawa S (2017) A novel and selective 
melanin-concentrating hormone receptor 1 antagonist ameliorates obesity and hepatic 
steatosis in diet-induced obese rodent models. Eur J Pharmacol 796:45-53. 

Kela J, Salmi P, Rimondini-Giorgini R, Heilig M, Wahlestedt C (2003) Behavioural analysis of 

melanin-concentrating hormone in rats: evidence for orexigenic and anxiolytic properties. 
Regul Pept 114:109-114. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

107 

 

Lee J, Raycraft L, Johnson AW (2021) The dynamic regulation of appetitive behavior through 

lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol 
Behav 229:113234. 

Lembo PM, Grazzini E, Cao J, Hubatsch DA, Pelletier M, Hoffert C, St-Onge S, Pou C, 

Labrecque J, Groblewski T, O'Donnell D, Payza K, Ahmad S, Walker P (1999) The receptor 
for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. 
Nat Cell Biol 1:267-271. 

Liu JJ, Tsien RW, Pang ZP (2022) Hypothalamic melanin-concentrating hormone regulates 

hippocampus-dorsolateral septum activity. Nat Neurosci 25:61-71. 

Lockie SH, McAuley CV, Rawlinson S, Guiney N, Andrews ZB (2017) Food Seeking in a Risky 

Environment: A Method for Evaluating Risk and Reward Value in Food Seeking and 
Consumption in Mice. Front Neurosci 11:24. 

Lopez CA, Guesdon B, Baraboi ED, Roffarello BM, Hetu M, Richard D (2011) Involvement of 

the opioid system in the orexigenic and hedonic effects of melanin-concentrating hormone. 
Am J Physiol Regul Integr Comp Physiol 301:R1105-1111. 

Messina MM, Boersma G, Overton JM, Eckel LA (2006) Estradiol decreases the orexigenic 

effect of melanin-concentrating hormone in ovariectomized rats. Physiol Behav 88:523-528. 

Mitra A, Lenglos C, Timofeeva E (2014) Activation of GABAA and GABAB receptors in the 

lateral septum increases sucrose intake by differential stimulation of sucrose licking activity. 
Behav Brain Res 273:82-88. 

Mul JD, la Fleur SE, Toonen PW, Afrasiab-Middelman A, Binnekade R, Schetters D, Verheij 

MM, Sears RM, Homberg JR, Schoffelmeer AN, Adan RA, DiLeone RJ, De Vries TJ, 
Cuppen E (2011) Chronic loss of melanin-concentrating hormone affects motivational aspects 
of feeding in the rat. PLoS One 6:e19600. 

Noble EE, Hahn JD, Konanur VR, Hsu TM, Page SJ, Cortella AM, Liu CM, Song MY, Suarez 

AN, Szujewski CC, Rider D, Clarke JE, Darvas M, Appleyard SM, Kanoski SE (2018) 
Control of Feeding Behavior by Cerebral Ventricular Volume Transmission of Melanin-
Concentrating Hormone. Cell Metab 28:55-68 e57. 

Paxinos G, Franklin K (2001) The Mouse Brain in Stereotaxic Coordinates. San Diego, CA: 

Academic Press. 

Payant MA, Spencer CD, Chee MJ (2023) Inhibitory actions of melanin-concentrating hormone 

in the lateral septum. bioRxiv. 

Pesold C, Treit D (1996) The neuroanatomical specificity of the anxiolytic effects of intra-septal 

infusions of midazolam. Brain Res 710:161-168. 

Pissios P, Frank L, Kennedy AR, Porter DR, Marino FE, Liu FF, Pothos EN, Maratos-Flier E 

(2008) Dysregulation of the mesolimbic dopamine system and reward in MCH-/- mice. Biol 
Psychiatry 64:184-191. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

108 

 

Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, 

Przypek R, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in 
the central regulation of feeding behaviour. Nature 380:243-247. 

Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Brain 

Res Rev 24:115-195. 

Romero-Pico A, Sanchez-Rebordelo E, Imbernon M, Gonzalez-Touceda D, Folgueira C, Senra 

A, Ferno J, Blouet C, Cabrera R, van Gestel M, Adan RA, Lopez M, Maldonado R, Nogueiras 
R, Dieguez C (2018) Melanin-Concentrating Hormone acts through hypothalamic kappa 
opioid system and p70S6K to stimulate acute food intake. Neuropharmacology 130:62-70. 

Rossi M, Choi SJ, O'Shea D, Miyoshi T, Ghatei MA, Bloom SR (1997) Melanin-concentrating 

hormone acutely stimulates feeding, but chronic administration has no effect on body weight. 
Endocrinology 138:351-355. 

Rossi M, Beak SA, Choi SJ, Small CJ, Morgan DG, Ghatei MA, Smith DM, Bloom SR (1999) 

Investigation of the feeding effects of melanin concentrating hormone on food intake--action 
independent of galanin and the melanocortin receptors. Brain Res 846:164-170. 

Saito Y, Cheng M, Leslie FM, Civelli O (2001) Expression of the melanin-concentrating 

hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol 435:26-40. 

Santollo J, Eckel LA (2008) The orexigenic effect of melanin-concentrating hormone (MCH) is 

influenced by sex and stage of the estrous cycle. Physiol Behav 93:842-850. 

Santollo J, Eckel LA (2013) Oestradiol decreases melanin-concentrating hormone (MCH) and 

MCH receptor expression in the hypothalamus of female rats. J Neuroendocrinol 25:570-579. 

Shearman LP, Camacho RE, Sloan Stribling D, Zhou D, Bednarek MA, Hreniuk DL, Feighner 

SD, Tan CP, Howard AD, Van der Ploeg LH, MacIntyre DE, Hickey GJ, Strack AM (2003) 
Chronic MCH-1 receptor modulation alters appetite, body weight and adiposity in rats. Eur J 
Pharmacol 475:37-47. 

Sherwood A, Holland PC, Adamantidis A, Johnson AW (2015) Deletion of Melanin 

Concentrating Hormone Receptor-1 disrupts overeating in the presence of food cues. Physiol 
Behav 152:402-407. 

Subramanian KS, Lauer LT, Hayes AMR, Decarie-Spain L, McBurnett K, Nourbash AC, 

Donohue KN, Kao AE, Bashaw AG, Burdakov D, Noble EE, Schier LA, Kanoski SE (2023) 
Hypothalamic melanin-concentrating hormone neurons integrate food-motivated appetitive 
and consummatory processes in rats. Nat Commun 14:1755. 

Terrill SJ, Subramanian KS, Lan R, Liu CM, Cortella AM, Noble EE, Kanoski SE (2020) 

Nucleus accumbens melanin-concentrating hormone signaling promotes feeding in a sex-
specific manner. Neuropharmacology 178:108270. 

Wang D, Pan X, Zhou Y, Wu Z, Ren K, Liu H, Huang C, Yu Y, He T, Zhang X, Yang L, Zhang 

H, Han MH, Liu C, Cao JL, Yang C (2023) Lateral septum-lateral hypothalamus circuit 
dysfunction in comorbid pain and anxiety. Mol Psychiatry 28:1090-1100. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

109 

 

Xu Y, Lu Y, Cassidy RM, Mangieri LR, Zhu C, Huang X, Jiang Z, Justice NJ, Xu Y, Arenkiel 

BR, Tong Q (2019) Identification of a neurocircuit underlying regulation of feeding by stress-
related emotional responses. Nat Commun 10:3446. 

Zhong C, Wang L, Cao Y, Sun C, Huang J, Wang X, Pan S, He S, Huang K, Lu Z, Xu F, Lu Y, 

Wang L (2022) A neural circuit from the dorsal CA3 to the dorsomedial hypothalamus 
mediates balance between risk exploration and defense. Cell Rep 41:111570. 

 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

110 

 

Chapter 4: Melanin-concentrating hormone and glutamate release in the lateral septum act 
on different cells to regulate feeding and anxiety-like behaviour

 

 

Mikayla A Payant, Persephone A Miller, Anjali Shankhatheertha, Jesukhogie G Williams-
Ikhenoba, Haneen B El Khalili, Marina Guirguis, Melissa J Chee 

Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada 

 

Author Contributions. Study conception and design: M.J.C. Stereotaxic surgery: M.A.P, M.J.C. 

Tissue processing and anatomical analysis: M.A.P, A.S, J.G.W, H.B.E, M.G. 
Electrophysiology: M.A.P, M.J.C. Behavioural testing: M.A.P, P.A.M. Data 
analysis and figure assembly: M.A.P. Initial manuscript draft: M.A.P. Manuscript 
editing: M.A.P, M.J.C. 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

111 

 

4.1  

Abstract 

Neurons that produce neuropeptides regulate neural circuitry through the slow, prolonged effects 

of neuropeptides as well as fast-acting neurotransmitters. The consideration of both types of 

chemical messengers is critical to fully understanding how neural circuits can regulate 

behaviour. Neurons in the lateral hypothalamus that produce melanin-concentrating hormone 

(MCH) can also co-express and release glutamate. MCH neurons send strong projections to the 

lateral septum (LS) and release glutamate to innervate LS cells. MCH can also act in the LS to 

directly inhibit LS cells, however the interaction between MCH and glutamate within this circuit 

is not known. We examined the mechanism of transmission and sites of action of MCH and 

glutamate release within the LS and determined how activation of this circuit can modulate 

feeding and anxiety-like behaviour. We performed whole-cell patch clamp recordings from LS 

neurons, photostimulated MCH terminals, and pharmacologically applied MCH to characterize 

LS populations that are innervated by glutamate release and that are inhibited by MCH. We then 

activated MCH neuron terminals in the LS 

in vivo

 using optogenetics and measured food intake 

and anxiety-like behaviour in an open field. We found that MCH and glutamate acted on distinct 

populations within the LS. Most cells in the LS that were MCH-sensitive were not directly 

innervated by MCH neurons but were inhibited by optogenetically-evoked MCH release, 

suggesting that MCH acted via volume transmission. Furthermore, activation of MCH neuron 

terminals in the LS increased feeding through glutamate release and MCH release had anxiolytic 

functions but only in the absence of glutamate transmission. Together these findings highlighted 

different actions of MCH and glutamate release that can differentially regulate behavioural 

outcomes through the LS.  

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

112 

 

4.2  

Introduction 

Neurons that produce neuropeptides invariably co-express additional chemical messengers, 

which may include other peptide transmitters or fast-acting neurotransmitters like GABA or 

glutamate (Merighi, 2002). The co-expressed messengers can have independent (Schneeberger et 

al., 2018) or parallel actions (Naganuma et al., 2019) on physiological or behavioural outcomes 

(Beekly et al., 2023), for example by their convergence at the same postsynaptic cell targets or 

by parallel activation of separate cell targets, respectively. Almost all cells that produce melanin-

concentrating hormone (MCH) in the lateral hypothalamus can release the neurotransmitter 

glutamate (Chee et al., 2015) though GABA release has also been reported (Jego et al., 2013) 

and may be regulated in a site- or context-dependent manner (Beekly et al., 2023). While the 

rapid release of glutamate and GABA are well-suited for conventional synaptic transmission 

between the presynaptic active zone and postsynaptic density, this is not the case for 

neuropeptides, which can be released extrasynaptically along the axon and travel longer 

distances to reach their target sites (Hokfelt, 1991; van den Pol, 2012). Indeed, MCH acts partly 

via volume transmission through its release into the cerebrospinal fluid to drive its orexigenic 

actions (Noble et al., 2018). As MCH neurons also have dense projections throughout the brain, 

MCH may facilitate long-range intercellular communication by its release and volume 

transmission across extracellular space within in discrete brain regions in conjunction with fast 

synaptic transmission of glutamate.  

The lateral septum (LS) comprises the densest projections from MCH neurons and is a 

site underlying the orexigenic actions of MCH (Chapter 2). LS cells are directly innervated by 

monosynaptic glutamate release from MCH neurons (Chee et al., 2015), whose nerve terminals 

are most abundant in the dorsal LS. However, these dorsal LS regions are relatively devoid of 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

113 

 

MCH immunoreactivity or the expression of MCH receptors MCHR1 (Payant et al., 2023). By 

contrast, in the ventrolateral LS, MCH-immunoreactive (MCH-ir) fibers are distributed nearby 

LS cells that express MCHR1 (Payant et al., 2023), and MCH acts postsynaptically at ventral LS 

cells (Payant et al., 2023). 

Activation of MCH neurons regulates several behaviours including feeding (Noble et al., 

2018; Terrill et al., 2020; Subramanian et al., 2023), anxiety-like behaviour (He et al., 2022), 

sleep (Jego et al., 2013; Naganuma et al., 2019), and memory processes (Davis and 

Vanderheyden, 2020; Liu et al., 2022). Several studies have begun to elucidate the corresponding 

messenger that underlie these behaviours via MCHR1 antagonism or transgenic models that 

disable MCH or glutamate release. These studies described independent roles of MCH or 

glutamate (Schneeberger et al., 2018; Naganuma et al., 2019; Sankhe et al., 2023), but it is not 

clear whether MCH and glutamate converge to express a common behaviour or whether they act 

via the same brain target.  

As the LS is a putative site of both glutamate and MCH release, we determined whether 

these messengers act at the same or different population of LS cells. Additionally, given the 

anorexigenic and anxiogenic role of LS activation (Pesold and Treit, 1996; Qu et al., 1996; 

Gabriella et al., 2022; He et al., 2022), we investigated the contribution of glutamate and/or 

MCH release on feeding and anxiety-like behaviour. We implemented Cre-dependent viral 

tracing to compare the relative distribution of 

Pmch-cre 

nerve terminals and MCH-ir fibers 

throughout the LS to analyze putative glutamate and MCH release sites, respectively. Glutamate 

release was relatively infrequent in the ventrolateral LS where MCH-ir fibers were most 

prominent, and glutamate and MCH largely targeted separate LS cells. To delineate the roles of 

MCH and glutamate, we pharmacologically blocked MCHR1 and/or deleted the vesicular 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

114 

 

transporter 

Vglut2

 in 

Pmch-cre 

cells, respectively. Interestingly, photostimulating MCH nerve 

terminals in the LS promoted feeding, but this effect was attributed to glutamate release, and we 

found that glutamate may also mask the anxiolytic actions of MCH. Together, these results 

highlight differences in neurotransmitter and neuropeptide transmission and how these effects at 

a circuit level may translate to functional differences in the regulation of behaviour.   

4.3  

Materials and Methods  

Animals.

 All experiments described have been approved by the Carleton University Animal Care 

Committee in accordance with guidelines provided by the Canadian Council on Animal Care. 

Pmch-cre

 mice (stock 014099; Jackson Laboratory) expressing Cre recombinase in MCH 

neurons (Kong et al., 2010; Chee et al., 2015) were bred in house and used for 

in vivo

 and 

in 

vitro

 optogenetic experiments. 

Pmch-cre:Vglut2-flox

 mice were generated by crossing 

Pmch-cre

 

mice with 

Vglut2-flox

 mice (012898; Jackson Laboratory), where exon 2 of 

Slc17a6

 (

Vglut2

) is 

flanked with loxP sites to selectively eliminate glutamate transmission from MCH neurons 

(Sankhe et al., 2023). These mice were used for 

in vivo

 optogenetic experiments. Cre negative 

WT and 

Vglut2-flox

 littermates were used as controls in behavioural experiments. All mice were 

given 

ad libitum

 access to regular chow (Teklad Global Diets 2014, Envigo, Mississauga, 

Canada) and water, and they were maintained on a 12-hour light-dark cycle (22

24°C; 40

60% 

humidity).

 

4.3.1   Stereotaxic surgery

  

Male and female mice between 5 and 33 weeks of age were given a subcutaneous injection of 

carprofen (20 mg/kg; Zoetis, Kirkland, QC, Canada) at the beginning of surgery. Following 

anesthetization with isofluorane, they were placed in a stereotaxic apparatus (David Kopf 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

115 

 

Instruments, Tujunga, CA), and their incision sites were sterilized before making a rostrocaudal 

incision exposing the skull. The skull was cleaned, and the head position was leveled within the 

stereotaxic frame using bregma and lambda coordinates from the skull.  

Viral injections.

 For retrograde tracing, 75 nL of a Cre-dependent retrograde adeno-

associated virus (AAVrg-ef1a-flox-hChR2(H134R)-mCherry-WPRE-HGHpA; 

7.5 x 10^12 

GC/ml; Addgene, Watertown, MA

) was delivered unilaterally into the LS of a male mouse (in 

mm: anteroposterior (AP) 

0.9, mediolateral (ML) 

0.3, dorsoventral (DV) 

3.3). To label MCH 

terminals, a Cre-dependent AAV encoding synaptophysin and yellow fluorescent protein 

(AAV8-DIO-Synaptophysin-YFP) was injected into the lateral hypothalamus to label medial 

(AP 

1.1, ML 

0.6, DV 

5.2) and lateral (AP 

1.6, ML 

1.4, DV 

4.7) MCH neurons (Paxinos 

and Franklin, 2001; Dong, 2008). Mice were injected unilaterally for electrophysiology 

experiments and bilaterally for behavioural experiments with 75 nl of Cre-dependent AAV 

vectors (Neurophotonics Centre, Quebec, QC, Canada) encoding channelrhodopsin-mCherry 

(AAV2/DJ8-EF1

ɑ

-DIO-hChR2(H134R)-mCherry; 4.4 

 10

12

 GC/ml) to target medial (in mm: 

AP 

1.2, ML ±0.5, DV 

5.2) and lateral (in mm: AP 

1.6, ML ±1.3, DV 

5.0) MCH neurons. 

Animals were allowed to recover for at least one week prior to additional handling, where 

applicable.   

Optic fiber implantation.

 One to two weeks following viral injections, mice used for 

behavioural testing were anesthetized and optic fiber implants were inserted bilaterally into the 

LS on a 10° and 350° angle (in mm: AP 0.7, ML ±0.9, DV 

2.9). Two layers of Metabond 

cement (Parkell Inc, Brentwood, NY), a mixture of powder (#S396), catalyst (#S371), and base 

(#S398) were applied around the optic fiber and halfway up the ceramic ferrule to secure the 

implant. Jet dental cement was then applied to cover the Metabond cement creating a smoother 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

116 

 

surface and further securing the implants to the skull. The skin was pulled partway up the 

implant and sutures were used to minimize the exposed skull.   

4.3.2   Neuroanatomy 

Tissue processing. 

Mice

 

were anesthetized with an intraperitoneal injection (i.p.) of chloral 

hydrate (700 mg/kg; MilliporeSigma, Burlington, MA) prepared in sterile saline, transcardially 

perfused with cold (4

C) saline (0.9% NaCl), then followed by fixation with 10% formalin 

(VWR, Radnor, PA). The brain was extracted from the skull, post-fixed overnight in 10% 

formalin (24 hr, 4

C), and cryoprotected in phosphate buffered saline (PBS) containing 20% 

sucrose and 0.05% sodium azide (24 hr, 4

C). All brains were sliced into five series of 30 

coronal sections using a freezing microtome (Spencer Lens Co., Buffalo, NY). 

Dual-label immunohistochemistry.

 To amplify mCherry expression and detect MCH 

immunoreactivity in the brain injected with a retrograde virus, the tissue was first washed in six 

5-min exchanges of PBS followed by a 20-minute incubation in 0.3% hydrogen peroxide in PBS. 

Following three 10 min washes in PBS, the tissue was placed in blocking solution containing 3% 

normal donkey serum (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) in PBS 

with 0.25% Triton-X (PBT) and 0.05% sodium azide for 2 hrs (NDS; RT). After blocking, the 

tissue was incubated overnight (RT) with an anti-rabbit dsRed antibody (1:2000; Takara Bio, 

Ann Arbor, MI; #632496). The following day, the tissue was washed in six 5-min exchanges of 

PBS and incubated with a biotinylated goat anti-rabbit antibody (1:500; Jackson 

ImmunoResearch Laboratories, RRID: AB_2337965) prepared in NDS for 1 hr. After three 10-

min washes in PBS, the tissue was treated with avidin biotin horseradish peroxidase (PK-6100, 

Vector Laboratories, Newark, CA) in PBT for 30 min (RT). The tissue was washed with three 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

117 

 

10-min PBS exchanges and underwent tyramine signal amplification in PBT comprising 0.005% 

hydrogen peroxide and 0.5% borate-buffered biotinylated (Sulfo-NHS-LC biotin; 21335, 

Thermo Fisher Scientific, Waltham, MA) tyramine (T90344, MilliporeSigma) for 20 min (RT). 

Following three 10-min washes in PBS, tissue was treated with a streptavidin conjugated Cy3 

antibody (1:500; Jackson ImmunoResearch; AB_2337244) in NDS without sodium azide for 2 hr 

(RT). Slices were washed in three 10-min exchanges of PBS and then incubated overnight with 

an anti-rabbit MCH antibody (1:2,000; kindly provided by Dr. E. Maratos-Flier, Beth Israel 

Deaconess Medical Center; RRID: AB_2314774; (Elias et al., 1998; Chee et al., 2013) in NDS. 

The following day, the tissue was washed six times in PBS (5 min each) then incubated with a 

donkey anti-rabbit Alexa Fluor 488 antibody (1:500; Thermo Fisher Scientific; RRID: 

AB_2535792) in NDS without sodium azide for 2 hr (RT). Slices were washed in three 10-min 

PBS exchanges and then mounted on SuperFrost Plus microscope slides and coverslipped with 

ProLong Diamond Antifade Mountant (Thermo Fisher Scientific). 

Single-label immunohistochemistry.

 To detect yellow fluorescent protein 

immunoreactivity, the tissue was washed in six 5-min exchanges of PBS and blocked with NDS 

(2 hr, RT). After blocking, the tissue was incubated with an anti-chicken GFP antibody (1:2,000; 

MilliporeSigma; #06-896) overnight in NDS (RT). The next day, the tissue was washed six times 

in PBS (5 min each) then incubated with a donkey anti-chicken Alexa Fluor 488 antibody 

(1:500; Jackson ImmunoResearch Laboratories; RRID: AB_ 2340375) in NDS without sodium 

azide for 2 hr (RT). Slices were washed and then mounted on SuperFrost Plus microscope slides 

and coverslipped with ProLong Diamond Antifade Mountant (Thermo Fisher Scientific). 

Confocal imaging.

 All images were acquired using a Nikon Ti2-E inverted microscope 

(Nikon Instruments Inc., Mississauga, Canada) and processed using NIS-Elements Imaging 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

118 

 

Software (Nikon). Tiled confocal images of the LHA and LS were acquired with a Nikon C2 

confocal system and a Plan Apochromat 10

 objective (0.45 numerical aperture) at a single 

plane using 405-nm, 561-nm, and 640-nm excitation lasers to visualize NeuroTrace, mCherry, 

and Alexa Fluor 647 fluorophores, respectively.  

Plane of section analysis and mapping

 was carried out as previously described in Bono 

et al. (2022), Negishi et al. (2020), and Payant et al. (2023). Briefly, an adjacent series of tissue 

underwent Nissl staining and brightfield imaging using a CF160 Plan Apochromat 10

 objective 

lens and acquired with a DS-Ri2 color camera (Nikon). Images of Nissl-stained tissue containing 

the LS were then parcellated in Adobe Illustrator (Adobe Inc., San Jose, CA) to identify 

boundaries of the LS and corresponding subregions as defined in the 

Allen Reference Atlas

 

(

ARA

; Dong 2008) as well as to assign an ARA level to each slice. Parcellations were then 

transferred onto confocal images of synaptophysin-expressing terminals and synaptophysin 

expression within the LS was traced in Illustrator. The collection of traces was copied onto 

reference templates from the ARA and resized so that the experimental LS was accurately 

represented within the boundaries of the atlas template.  

4.3.3   Construction of implants and patch cords 

Construction of optical fiber implants. 

As adapted from (Sparta et al., 2011), a 10 mm long 

section of 0.39 NA, 200 µm core multimode optical fiber (FT200EMT, Thorlabs, Newton, NJ) 

was stripped of the cladding and scored. The piece that was broken off was inspected to confirm 

a clean break and was inserted into a 1.25 mm ceramic ferrule (CFLC230-10, Thorlabs). The 

optic fiber was adjusted to be flush with the top of the ferrule, and heat curable epoxy (PFP-

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

119 

 

353ND; Precision fiber products) was applied to the back of the ferrule where it met the optic 

fiber and cured using a heat gun to secure the optic fiber to the ferrule.  

To test the output of optical fiber implants, implants were attached to a patch cable using 

a ceramic mating sleeve (ADAL1-5, Thorlabs) and illuminated with a PlexBright Blue (465 nm) 

Table-top LED module (Plexon Inc, Dallas, TX) controlled by a PlexBright LD-1 Single 

Channel LED driver (Plexon Inc) set to 300 mA. The light output was measured using a 

photodiode sensor and power meter (PM160, Thorlabs), and the amperage necessary to reach an 

output of 1.5 mW (corresponding to a light power density of 10

12 mW/mm

2

) was calculated. 

Only fiber implants that delivered >1.5 mW of light were used. 

Construction of optical fiber patch cable. 

Patch cables were prepared using the FC/PC 

fiber optic termination kit (CK03, Thorlabs), and the protocol was adapted from the step-by-step 

instructions included (MS403-10). In brief, the desired length of optical fiber was cut and fed 

through a short piece of furcation tubing and approximately 10 mm of one end of the optical 

fiber was stripped of cladding. An FC/PC multimode connector (30230G3, Thorlabs) was 

backfilled with epoxy, and the stripped end of the optical fiber was fed through the connector. 

The furcation tubing, crimp sleeve, and boot were brought to meet the connector. The crimp 

sleeve was used to attach the furcation tubing against the connector and a small amount of epoxy 

was applied to secure the boot over the crimp sleeve. The epoxy was allowed to dry overnight, 

and the optical fiber protruding past the connector was scored and removed. The end of the 

connector was then polished using increasingly fine polishing film (30 µm, 6 µm, 3 µm, 1 µm, 

and 0.02 µm) and an FC/PC polishing puck. The connector was periodically inspected using a 

200

 fiber microscope and polishing continued until the surface of the connector and optical 

fiber was smooth and free of blemishes. The other end of the patch cable was made by stripping 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

120 

 

a short piece of optical fiber, cleaving the end to achieve a clean break, and inserting it flush with 

the end of a ceramic ferrule. Heat curable epoxy was then applied where the back of the ferrule 

met the optical fiber and cured using a heat gun.  

4.3.4   Behavioural testing. 

Photostimulation of MCH terminals in vivo

. Animals were handled and habituated to the patch 

cables for 3 days prior to behavioural testing. During light ON conditions, patch cords were 

connected to LED modules and an LED driver. The LED driver was set to deliver 10

15 

mW/mm

2

 of light into the brain and an Arduino Uno (Arduino, New York, NY) was 

programmed to relay light pulses (5 ms) at 10 Hz for 1 s followed by 2 s of no light. This pattern 

was repeated for the duration of the test in Light ON trials. Thirty minutes prior to testing, mice 

received an intraperitoneal injection of either vehicle or MCHR1 antagonist (10 mg/kg, TC-

MCH T7c, Tocris, Toronto, ON, Canada) where applicable. Testing was repeated 2

3 days later 

under the other conditions, in a counterbalanced design. All optogenetic experiments were 

performed between 4 and 7 weeks following viral injections when colocalization of native AAV 

fluorescence with MCH immunoreactivity was highest (

Supporting figure 1

). 

Feeding. 

Mice were habituated to the testing room for ≥1 hr and placed in a habituated 

cage with a known amount of chow diet. Mice had continuous access to the chow for 1 hr, after 

which the mouse was removed, and the food was weighed. All testing took place during the light 

cycle between ZT2 to ZT9.  

Open field test. 

Mice were

 

habituated to

 

the testing room for

 

≥1 hr and then were placed 

into an opaque open field box (45 x 45 x 45 cm). The mice were allowed to explore the open 

field for 10 min while a camera overhead recorded their movement.  

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

121 

 

4.3.5   Confirmation of injection and implant sites  

Immunohistochemistry.

 To detect MCH immunoreactivity, single-label immunohistochemistry 

was used as described above. The tissue was washed, blocked in NDS for 2hr (RT) and then 

incubated overnight with an anti-rabbit MCH antibody (1:2,000; kindly provided by Dr. E. 

Maratos-Flier, Beth Israel Deaconess Medical Center; RRID: AB_2314774; (Elias et al., 1998; 

Chee et al., 2013) in NDS (RT). The following day, after washing the tissue, it was incubated 

with an Alexa Fluor 647-conjugated streptavidin antibody (1:500; Jackson ImmunoResearch 

Laboratories; RRID: AB_ 2341101) in NDS without sodium azide for 2 hr (RT). Slices were 

then mounted on SuperFrost Plus microscope slides and coverslipped with ProLong Diamond 

Antifade Mountant (Thermo Fisher Scientific).

 

Injection site analysis. 

Images of the MCH and mCherry expression in the LHA were 

imported into Illustrator and cells that expressed MCH, mCherry, or both MCH and mCherry 

were counted to calculate the efficacy of the viral injection for each mouse. Counts were plotted 

as the percent MCH transduction over time since viral injection (

Supporting figure 1

). A lack of 

viral expression was confirmed in WT mice (

Supporting figure 2

). 

Implant site validation. 

Images of the LS were examined to determine the placement of 

the optic fiber implants. Cases where both implants landed outside the boundaries of the LS were 

excluded from analysis.

  

4.3.6   Electrophysiology 

Slice preparation

Male and female

 Pmch-cre 

aged 7

20 weeks and

 

injected with an 

channelrhodopsin-mCherry encoding virus 4

7 weeks prior, were anesthetized with an injection 

of chloral hydrate (700 mg/kg, i.p.) and transcardially perfused with a carbogenated (95% O

2

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

122 

 

5% CO

2

), ice cold N-methyl-d-glucamine (NMDG) based solution containing (in mM) 100 

NMDG, 2.5 KCl, 20 HEPES, 25 glucose, 30 NaHCO

3

, 1.24 NAH

2

PO

4

, 0.5 CaCl

2

, 2 thiourea, 5 

Na-ascorbate, 3 Na-pyruvate, 10 MgSO

(300 mOsm/L). The brain was removed from the skull 

and sliced at 250 

m using a vibrating microtome (VT1000s, Leica Biosystems, Buffalo Grove, 

IL) in cold, carbogenated NMDG solution. Slices containing the LS and LHA were transferred to 

warm (37

C) NMDG solution for 5 min and then warm (37

C) glucose-based artificial 

cerebrospinal fluid (ASCF) containing (in mM) 124 NaCl, 3 KCl, 1.3 MgSO

4

, 1.4 NaH

2

PO

4

, 10 

glucose, 26 NaHCO

3

, 2.5 CaCl

2

 (300 mOsm/L) for 5 min. Slices were then allowed to recover at 

RT for at least one hour prior to slice recording.  

Slice recording

Prior to recording,

 

mCherry expression was first examined in the LHA 

and LS using epifluorescence illumination. Acute brain

 

slices containing the LS were then 

transferred to the recording chamber where they were continuously perfused with carbogenated, 

glucose-based ACSF (31

C). Slice recordings were performed on two separate electrophysiology 

rigs. Cells were visualized with infrared differential interference contrast microscopy at 40

 

magnification on either an Examiner.A1 microscope (Zeiss, Oberkochen, Germany) equipped 

with an AxioCam camera (Zeiss) and Axiovision software (Zeiss), or with an Eclipse FN1 

microscope (Nikon) equipped with a pco.panda 4.2 camera (Excelitas PCO GmbH, Kelheim, 

Germany) and NIS-Elements Imaging software (Nikon). 

Cells were recorded from two to three slices containing the LS and corresponding to 

Bregma 1.145

0.345 mm. Whole-cell patch-clamp recordings were performed using borosilicate 

glass pipettes (7

9 M

) backfilled with a potassium-based internal pipette solution containing 

(in mM) 120 K-gluconate, 10 KCl, 10 HEPES, 1 MgCl

2

, 1 EGTA, 4 MgATP, 0.5 NaGTP, 10 

phosphocreatine (290 mOsm/L, pH 7.24) to assess membrane properties, and glutamatergic 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

123 

 

events. Biocytin (0.4%; Cayman Chemical, Ann Arbor, MI) was added to the internal pipette 

solution to allow for post-hoc immunohistochemical labeling and visualization of recorded cells. 

Recordings of electrical activity were generated using a MultiClamp 700B amplifier (Molecular 

Devices, San Jose, CA) and digitized by a Digidata 1440A (Molecular Devices). All traces were 

acquired using pClamp 10.3 software (Molecular Devices) and filtered at 1 kHz. Data sets 

included 1

8 cells per mouse. 

Puff application.

 As described in (Payant et al., 2023), to determine if a cell was MCH-

responsive, we first delivered a short puff of MCH to a patched cell and identified if they 

responded with a reversible membrane hyperpolarization. To deliver the MCH puff, a second 

borosilicate glass “puff” pipette was fil

led with 3 

M MCH solution and lowered into the slice 

within 30

40 

m from the patched cell. A gradual positive pressure was manually applied to the 

puff pipette for 5

10 seconds until the MCH solution reached the patched cell.  

Drug treatment.

 Where applicable, TC-MCH 7c (10 

M, Tocris, Toronto, Canada) was 

applied to the slice during the baseline period approximately 10 min prior to photostimulation 

and maintained over the washout period. Antagonists were only added to cells that were 

hyperpolarized by a puff of MCH and by prolonged photostimulation. All drugs were prepared 

from stock solution then dissolved into ACSF immediately prior to application.  

Optogenetically evoked currents. 

As previously described in Chee et al. (2015),

 

photostimulation was generated using a 5W Luxeon blue light-emitting diode (Thorlabs) 

controlled by the Digidata 1440A. Three 5 ms light pulses (470 nm; power density, 10 

mW/mm

2

) 500 ms apart were used to elicit optogenetically-evoked excitatory post-synaptic 

currents (oEPSC). The light pulses were repeated 20 times, every 4 s, and then averaged using 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

124 

 

pClamp 10.3 software. To assess spike fidelity, 5 ms pulses of light were applied to the slice at 1 

Hz, 2Hz, 5 Hz, 10 Hz, 20 Hz, 50 Hz, and 100 Hz for 4 s while recording in current clamp at V

h

 = 

60 mV. 

 

Prolonged photostimulation. 

Following a

 

baseline period,

 

5 min of photostimulation was 

applied to the slice comprising of a 1s, 10 Hz burst of 5 ms light pulses followed by 2 s with no 

light.

 

After photostimulation the cell was held for an additional 15

30 min.  

 

Biocytin immunohistochemistry.

 Some brain slices used for electrophysiology recordings 

were post-fixed with 10% formalin to use for post-hoc immunohistochemical staining. The slices 

containing the biocytin-filled cells were rinsed in PBS (six 5-min washes), blocked in NDS (2 

hours; RT), incubated with a streptavidin-conjugated Cy3 antibody (1:500) prepared in NDS (2 

hours; RT), and then washed in PBS for 10 min. Brain slices were then mounted to Superfrost 

Plus microscope slides and coverslipped with ProLong Diamond Antifade Mountant. The 

position of recorded cells was determined in reference to landmarks in the slice including the 

corpus callosum, lateral ventricle, medial septum, nucleus accumbens, bed nucleus of the stria 

terminalis, and anterior commissure.  

4.3.7

 

Data analysis 

Behaviour analysis.

 

Mice were tracked in behaviour tests using ANY-maze (Stoelting Co, Wood 

Dale, IL).

 

To measure anxiety-like behaviour, the open field was divided into the outside 

perimeter and center area. The amount of time the mouse spent in each zone, based on tracking 

the center-point of the mouse, was calculated.

 

Light ON/OFF and drug conditions were 

compared using a two-way ANOVA with Bonferroni post-hoc testing. A three-way ANOVA 

was used to compare responses between male and female mice. The correlation between the 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

125 

 

percent MCH transduction and time since injection was determined using simple linear 

regression (

Supporting figure 1

). 

 

Resting membrane potential (RMP).

 Only neurons that exhibited a stable membrane 

potential (varied <5 mV) for > 30 s prior to puff application or photostimulation were included in 

our data analyses. For experiments using prolonged photostimulation, RMP was sampled every 1 

s using Clampfit 10.7 (Molecular Devices) and binned into 30 s increments. Control value was 

the mean RMP averaged over 1 min immediately prior to MCH application. The change in RMP 

(

 RMP) was determined at the peak effect, which was within 3

8 min of photostimulation. In 

puff experiments, RMP was sampled every 500 ms and binned into 2-second increments. 

Comparisons of 

 RMP at the peak effect of photostimulation were compared using a one-way 

ANOVA with Tukey post-hoc testing. 

Graphs and illustrations

. All data graphs were generated using Prism 9 (GraphPad Software, 

San Diego, CA). Plots of animal tracking were generated in ANY-maze. Results were considered 

statistically significant at 

p

 < 0.05. Representative sample traces data were exported from 

Clampfit and plotted in Origin 2018 (OriginLab Corporation, Northampton, MA). Manuscript 

figures were assembled in Illustrator. 

4.4  

Results  

4.4.1   Medial MCH neurons projected to the LS  

To identify the subpopulation of MCH neurons that project to the LS, we injected a Cre-

dependent retrograde virus expressing mCherry into the LS of a 

Pmch-cre

 mouse to label LS-

projecting MCH neurons within the lateral hypothalamus. We found that mCherry-labelled 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

126 

 

neurons in the lateral hypothalamus that expressed MCH immunoreactivity were typically 

distributed medial to the fornix (

Figure 1

).  

 

 

Figure 1. Medially-distributed MCH neurons projected to the LS. 

Merged low magnification 

confocal photomicrograph showing dsRed- and MCH-immunoreactive neurons in the lateral 
hypothalamus of 

Pmch-cre 

mice injected with a Cre-dependent retrograde AAV virus encoding 

mCherry (

A

i

). Overlaid (

ii

) high magnification confocal photomicrographs of neurons medial to 

the fornix (from dashed area in 

i

) showing the colocalization (filled arrowheads) of cells 

expressing MCH (green; 

iii

) and dsRed immunoreactivity (magenta; 

iv

). Scale bar: 100 µm (

i

), 

50 µm (

ii

iv

). fx, fornix; opt, optic tract; V3, third ventricle.  

 

4.4.2   MCH terminals did not overlap with MCH-immunoreactive fibers 

To assess putative regions for MCH and glutamate release in the LS, we transduced 

Pmch-cre

 

cells in the medial aspect of the hypothalamus mice with a Cre-dependent AAV encoding 

synaptophysin-EYFP to label and then map the nerve terminals from 

Pmch-cre 

cells in the LS to 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

127 

 

atlas templates from the 

ARA

 (Dong, 2008). We found EYFP expression throughout the LS with 

the highest expression at Level (L) 46. Within the LS, EYFP expression clustered toward the 

ventral part of the caudal LS (LSc) and dorsal part of the rostral LS (LSr; 

Figure 2A

). We then 

overlayed the distribution of MCH-ir fibers shown in Payant et al. (2023) to compare the relative 

distribution of synaptophysin-labeled 

Pmch-cre 

nerve terminals with MCH-ir fibers in the LS. 

Synaptophysin-EYFP expression minimally overlapped with MCH-ir fiber expression (

Figure 

2B

F

) and was most prominent anteriorly (L46) in the dorsal part of the LS. Meanwhile, MCH-

ir fibers were most abundant at the medial, ventral, and lateral borders of the LS and expression 

persisted in more posterior slices (

Figure 2D

E

). This indicated the differential distribution of 

MCH peptide and 

Pmch-cre

 nerve terminals and suggested that synaptic glutamate release and 

MCH release from 

Pmch-cre 

fibers may occur at distinct sites in the LS.  

 

 

Figure 2. Distribution of synaptophysin-EYFP and MCH-immunoreactive fibers in the LS. 

Confocal photomicrograph from the LS of 

Pmch-cre 

mice expressing synaptophysin-EYFP 

nerve terminals stained with an anti-GFP antibody (green) and MCH-immunoreactive (MCH-ir) 
fibers (magenta). Coronal maps of traced GFP- (orange) and MCH-ir expression (blue) in the LS 
at the indicated 

Allen Reference Atlas

 levels (

ARA

, bottom right; Dong, 2008) relative to Bregma 

(β, bottom right; 

B

F

). Scale bar: 100 µm. ACB, nucleus accumbens; aco, anterior commissure; 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

128 

 

BST, bed nuclei of the stria terminalis; cc, corpus callosum; ccg, corpus callosum, genu; CP, 
caudoputamen; fa, anterior forceps; isl, islands of Calleja; islm, major island of Calleja; LPO, 
lateral preoptic area; LSc, lateral septal nucleus, caudal part; LSr, lateral septal nucleus, rostral 
part; LSv, lateral septal nucleus, ventral part; MS, medial septal nucleus; SH, septohippocampal 
nucleus; TTd, taenia tecta, dorsal part; VL, lateral ventricle. 

 

4.4.3   MCH and glutamate innervated separate LS cells  

We injected a Cre-dependent virus encoding channelrhodopsin (ChR2)-mCherry into the lateral 

hypothalamus of 

Pmch-cre

 mice (

Figure 3A

i

) to express ChR2 in MCH neurons (

Figure

 

A

ii

iv

). Given the separation of MCH terminals with MCH fibers in the LS, we next functionally 

assessed whether cells that are innervated by synaptic glutamate release from MCH neurons 

(connected) correspond to those are also inhibited by MCH application (MCH-sensitive) (

Figure 

3B

). We focused our patch-clamp recordings to two main LS-containing brain slices: an anterior 

slice comprising the highest concentration of nerve terminals from 

Pmch-cre 

cells (

Figure 3C

i

and a posterior slice where MCH-ir fibers or MCHR1-expressing LS cells (Payant et al., 2023) 

would be most abundant (

Figure 3C

ii

). Our recording location was guided by the expression of 

channelrhodopsin-mCherry fibers (

Figure 3D

i

) and previously established distribution of 

MCHR1-expressing LS cells along the lateral ventricle (

Figure 3D

ii

) in order to sample from LS 

cells that are directly innervated by 

Pmch-cre

 nerve terminals or that are MCH-sensitive, 

respectively (

Figure 3E

).  

We applied blue light pulses to activate channelrhodopsin (ChR2)-expressing terminals in 

the LS and detected glutamate release from MCH neurons as an optogenetically-evoked 

excitatory post-synaptic current (oEPSC) that were blocked by the glutamate receptor blocker 

kynurenic acid (data not shown; Chee et al., 2015). We found that photostimulating ChR2-

expressing nerve terminals from MCH cells elicited an oEPSC at 33% (17 of 52) LS cells 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

129 

 

sampled. We then assessed if the cell was MCH-

sensitive by delivering a puff of MCH (3 μM) 

onto the cell and monitoring changes in membrane potential following the puff. The majority of 

connected LS cells (14 of 17) were not MCH-sensitive (

Figure 3F

) and only a small subset of 

connected cells (3 of 17) were MCH-

sensitive and responded with a reversible −1.0 

 0.2 mV (n 

= 3) hyperpolarization (

Figure 3G

). However, we also detected LS cells that were MCH-

sensitive (−1.4 

 0.7 mV, n = 4) but not innervated by MCH nerve terminals (

Figure 3H

), and 

over half of the LS cells sampled (31 of 52) were neither connected nor MCH-sensitive.  

Connected LS cells were predominantly found anteriorly toward the dorsomedial part of 

the LS (

Figure 3E

i

), which corresponded with the distribution of 

Pmch-cre 

nerve terminals. 

Meanwhile, LS cells that are also MCH-sensitive were more likely to be found in the posterior 

slice toward the ventrolateral LS (

Figure 3E

ii

) where MCHR1 expression was highest (Payant et 

al., 2023).   

Taken together, these findings indicated that MCH-sensitive LS cells may not be directly 

innervated by glutamate release from MCH nerve terminals thus providing supporting evidence 

for the volume transmission of MCH across the extracellular space within the LS.  

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

130 

 

 

Figure 3.

 

MCH- and glutamate- responsive cells in the LS. 

Representative, merged low 

magnification confocal photomicrograph (

i

) showing the transduction of MCH-immunoreactive 

(MCH-ir) 

Pmch-cre 

neurons (green) with a Cre-dependent virus encoding channelrhodopsin 

(ChR2)-mCherry labeled with mCherry immunoreactivity (magenta). Overlaid (

ii

) high 

magnification confocal photomicrograph showing the presence (filled arrowhead) or absence 
(open arrowhead) of cells co-expressing MCH (

iii

) and mCherry immunoreactivity (

iv

A

). 

Schematic of whole-cell patch-clamp recordings from LS neurons undergoing 470-nm (5 ms) 
blue light photostimulation of ChR2-expressing terminals from MCH neurons and MCH 
delivered through a puff pipette (

A

). LS recordings were performed from coronal (250 μm thick) 

anterior (

C

i

) and posterior (

C

ii

) slices corresponding to L44

45 and L46

48 (

Allen Reference 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

131 

 

Atlas

; Dong, 2008), respectively. Relative distribution of biocytin-filled recorded cell (green) 

amid native ChR2-mCherry projections in post-fixed LS slices (

D

) mapped to 

ARA

 templates (

E

showing the prevalence of recorded cells (

F

H

i

) that were connected (CNX) but not MCH-

sensitive (blue dots; 

F

), connected and MCH-sensitive (red dots; 

G

), not connected but MCH-

sensitive (pink dots; 

H

), and neither connected nor MCH-responsive (grey dots). LS cells 

directly innervated by 

Pmch-cre 

nerve terminals (“connected”; 

F

H

ii

) were revealed by an 

optogenetically-evoked excitatory postsynaptic current (oEPSC) at the recorded cell, and LS 
cells respon

ding to a puff application of 3 μM MCH (<3 s duration) with a reversible membrane 

hyperpolarization (“MCH

-

sensitive”; 

F

H

iii

). Scale bars: 100 µm (

B

i

), 20 µm (

B

ii

iv

), 100 µm 

(

C

D

) 20 mV, 20 ms (middle, 

F

H

), 2 mV, 10 s (right, 

F

H

).  

 

4.4.4   Extracellular channelrhodopsin-mediated MCH release in the LS  

In a subset of MCH-sensitive cells revealed by puff application of MCH, we implemented a high 

frequency photostimulation protocol to determine whether ChR2-expressing 

Pmch-cre

 fiber 

projections released MCH in the LS. We first recorded and photostimulated ChR2-expressing 

Pmch-cre

 soma (

Figure 4A

) and found that blue light pulses (470 nm, 5 ms) elicited time-locked 

action potential firing up to 10 Hz of light stimulation (

Figure

 

4B

), which is within the range of 

in vivo

 MCH neuron firing (Hassani et al., 2009).  

At the LS (

Figure 4C

), we recorded from LS cells and first determined if they were 

hyperpolarized by a puff application of MCH by 

1.9 

 0.4 mV (n = 6; 

Figure 4D

). In this set of 

LS recordings, most MCH-sensitive cells (5 of 6) were not innervated by 

Pmch-cre

 nerve 

terminals. After identifying a MCH-sensitive cell, we treated the brain slice with the glutamate 

receptor antagonist, kynurenic acid (1 mM), to block glutamate-mediated feedforward inhibition 

(Chee et al., 2015; Liu et al., 2022) and applied a 1-second 10 Hz (5 ms pulses) blue light train 

every 3

rd

 second (0.33 Hz pulse train) to MCH-sensitive cells. This light train photostimulation 

protocol elicited a 

4.9 

 1.6 mV membrane hyperpolarization (

Figure 4E

i

) that gradually 

returned to baseline after the end of the light train in four of six MCH-sensitive cells (

Figure 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

132 

 

4E

ii

) but had no effect on the remaining two cells (+0.5 

 0.2 mV, n = 2; 

Figure 4E

iii

). To 

assess if the light-evoked hyperpolarization was dependent on MCHR1 activation, we pretreated 

the slice with the MCHR1 antagonist, TC-

MCH 7c (10 μM), which largely blocked the light

-

induced membrane hyperpolarization (−1.3 

 1.3 mV, n = 2, 

p

 = 0.172; 

Figure 4E

ii

). These 

findings indicated evidence of local MCH release from MCH fibers in the LS.  

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

133 

 

 

 Figure 4. Optogenetically-evoked MCH release in the LS. 

Schematic of whole-cell patch-

clamp recordings from 

Pmch-cre 

cells in the lateral hypothalamus transduced with a Cre-

dependent AAV encoding channelrhodopsin (ChR2)-mCherry (

A

). Representative sample traces 

of action potential firing evoked by 470-nm (5 ms) blue light pulses at hypothalamic 

Pmch-cre 

neurons (

i

) and quantified as percent spike fidelity to assess the frequency of action potential 

firing elicited at its corresponding frequency of blue light photostimulation (

ii

B

). Schematic of 

a puff applicator placed near a whole-cell patch-clamp recording from LS cells located nearby 
ChR2-expressing 

Pmch-cre

 nerve terminals (

C

). Representative sample trace (

i

) and timecourse 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

134 

 

of the change in resting membrane potential (Δ RMP; 

ii

) following a puff application of MCH (3 

µM; 

D

). Representative sample trace (

i

), time course (

ii

), and peak showing ΔRMP (

iii

) from 

MCH-responsive LS cells (from 

D

) that were light-responsive (

ii

) in ACSF (black filled dots) or 

following 10 µM TC-MCH 7c (TC) pretreatment (open dots) or not light-responsive (

iii

) via a 10 

Hz (5 ms pulse width) light pulse train (0.33 Hz train lasting 1 s each) for 5 min. Scale bars: 20 
mV, 1 s (

B

), 1 mV, 5 s (

D

), 4 mV, 100 s (

E

). Significance (

p

 < 0.05) was determined with a two-

way mixed-effect ANOVA (

E

ii

left

) or unpaired 

t

-test (

E

ii

right

). 

 

4.4.5   Glutamate-mediated feeding by MCH nerve fibers in the LS 

Silencing LS output drives feeding while activating LS output suppresses feeding (Sweeney and 

Yang, 2016). Thus far, we have shown that optogenetic activation of fibers from MCH cells can 

release glutamate (

Figure 3

) and MCH (

Figure 4

) in the LS. In the LS, both glutamate release 

from MCH cells (Chee et al., 2015) and MCHR1 activation produces a net inhibition of LS 

activity (

Chapter 2

), and MCH infusion would stimulate feeding (

Chapter 3

), thus we 

hypothesized that 

in vivo 

optogenetic stimulation of MCH fibers in the LS would drive feeding.  

To determine the relative contribution of glutamate or MCH to the LS-mediated feeding 

circuit, we injected a Cre-dependent ChR2-encoding virus to the LHA of male and female WT 

(control) and 

Pmch-cre

 mice and implanted optic fiber implants in the LS to selectively 

photostimulate fiber projections from 

Pmch-cre 

cells. We applied the same photostimulation 

protocol (Light ON) established for MCH release 

in vitro

 (

Figure 4

) over one hour and 

measured homecage chow feeding at the end of the 1-hour photostimulation period (

Figure 5A

). 

In male mice, there was a main effect of light (F(2, 27) = 3.6; 

p

 = 0.040) as well as a significant 

interaction between light and genotype (F(2, 27) = 4.2; 

p

 = 0.026). LS photostimulation in WT 

mice had no change in food intake (Light OFF: 0.05 

 0.02 g; n = 7; Light ON, vehicle: 0.06 

 

0.02 g, n = 7, 

p

 > 0.999) but increased chow intake in male 

Pmch-cre

 mice (Light OFF: 0.04 

 

0.03 g; n = 8; Light ON, vehicle: 0.13 

 0.03 g, n = 9, 

p

 = 0.028). To determine whether light-

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

135 

 

evoked feeding was driven by MCH in the LS, we pretreated male 

Pmch-cre 

mice with the 

MCHR1 antagonist TC-MCH 7c (10 mg/kg), but this light-evoked orexigenic effect persisted 

(Light ON, TC-MCH 7c: 0.15 

 0.04 g, n = 10, p > 0.999; 

Figure 5B

).  

In female mice, there was a significant effect of light (F(2, 29) = 8.8; 

p

 = 0.001), but light 

did not interact with genotype (F(2, 29) = 1.0; 

p

 = 0.384). Similar to males, there was no change 

in chow intake in WT mice (Light OFF: 0.09 

 0.03 g; n = 7; Light ON, vehicle: 0.13 

 0.046 g, 

n = 7, 

p

 = 0.834), but photostimulating the LS in female 

Pmch-cre

 mice increased food intake 

(Light OFF: 0.058 

 0.02 g; n = 12; Light ON, vehicle: 0.16 

 0.02 g, n = 12, 

p

 = 0.014). 

Likewise, the orexigenic effect seen in female 

Pmch-cre

 mice was not blocked by TC-MCH 7c 

pretreatment (Light ON, TC-MCH 7c: 0.21 

 0.03 g, n = 7, 

p

 = 0.837; 

Figure 5C

).  

This suggested that the light-evoked orexigenic effect was not attributed to MCH release 

or MCHR1 activation. We next determined if glutamate release from MCH nerve terminals 

mediated the orexigenic effects following LS photostimulation. We deleted the vesicular 

transporter 

Vglut2 

in 

Pmch-cre 

cells in 

Pmch-cre;Vglut2-flox

 mice to disable glutamate release 

from the nerve terminals of MCH cells (Sankhe et al., 2023). As photostimulating the LS of male 

and female 

Pmch-cre 

mice similarly stimulated chow intake (F(1, 29) = 0.60; 

p

 = 0.444), feeding 

effects in male and female 

Pmch-cre;Vglut2-flox

 mice were grouped. Interestingly, we observed 

no main effect of light (F(2, 15) = 0.4; 

p

 = 0.685) nor an interaction between light and genotype 

(F(2, 15) = 1.3; 

p

 = 0.302). LS photostimulation in neither 

Vglut2-flox

 control mice nor 

Pmch-

cre;Vglut2-flox

 mice altered food intake (

Figure 5D

). These findings suggested that 

photostimulation of MCH nerve terminals in the LS drives feeding primarily through glutamate 

release.  

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

136 

 

4.4.6   MCH-mediated anxiolysis in the LS  

Given that inhibition of the LS will decrease anxiety-like behaviour (Drugan et al., 1986; Pesold 

and Treit, 1996; Lamontagne et al., 2016), we photostimulated MCH nerve terminals in the LS 

for 10 min when placed in an open field arena, and we recorded the time spent in the center of 

the open arena as a measure of anxiogenesis.  

Net photostimulation of MCH projections in the LS of WT and 

Pmch-cre

 mice did not 

produce a significant main effect of light (F(2, 22) = 0.5; 

p

 = 0.610) or interaction between light 

and genotype (F(2, 22 = 0.7; 

p

 = 0.492) on time spent in the center of the open field in male 

(

Figure 5E

) or female mice (light effect: F(2, 38) = 2.9; 

p

 = 0.065; light x genotype: (F(2, 38) = 

0.2; 

p

 = 0.842; 

Figure 5F

).  

Interestingly, in 

Pmch-cre;Vglut2-flox

 mice, there was a significant main effect of light 

(F(2, 11) = 11.5; 

p

 = 0.002) and interaction between light and genotype (F(2, 11) = 8.4; 

p

 = 

0.006). Photostimulating the LS of 

Pmch-cre;Vglut2-flox

 mice increased center time (Light OFF: 

49.95 

 12.05 s; n = 2; Light ON, vehicle: 209.51 

 40.68 s, n = 4, 

p

 = 0.003; 

Figure 5F

). TC-

MCH 7c pretreatment reverted this outcome (Light ON, TC-MCH 7c: 100.11 

 23.28 s, n = 4, 

p

 

= 0.006) to levels similar to the light OFF condition (p > 0.999; 

Figure 5G

) thus suggesting that 

increase in center time within the center arena is related to MCHR1 activation. This suggested 

that disabling glutamate release unmasked the anxiolytic effects of MCH release. 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

137 

 

 

Figure 5. Activation MCH terminals in the LS elicited orexigenic and anxiolytic effects.

 

Schematic (

A

) of 

in vivo

 LS photostimulation 10 Hz (10

15 mW/mm

2

; 5 ms pulses) light pulse 

train (0.33 Hz train lasting 1 s per train) of wildtype (WT) or 

Pmch-cre 

mice transduced by a 

Cre-dependent AAV encoding channelrhodopsin-mCherry at the lateral hypothalmus following 
aCSF vehicle treatment (Light ON, veh), 10 mg/kg (ip) TC-MCH 7c treatment (Light ON, TC), 
or without photostimulation (Light OFF). Chow intake from WT and 

Pmch-cre

 male (

B

) and 

female (

C

) mice over 1 h following photostimulation to assess the contribution of MCH release 

to feeding. Chow intake of male and female 

Vglut2-flox

 and 

Pmch-cre;Vglut2-flox

 mice over 1 h 

following photostimulation to assess the contribution of glutamate release from 

Pmch-cre 

cells to 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

138 

 

feeding (

D

). Representative plots of animal movement in the open field test (

top

) capturing the 

time spent within the center of the open arena (red outlined area) during photostimulation. Time 
spent in the center arena of WT and 

Pmch-cre

 male (

E

) and female (

F

) mice over 10 min during 

photostimulation to assess the contribution of MCH release to anxiety-like behaviour. Time 
spent in the center arena of male and female 

Vglut2-flox

 and 

Pmch-cre;Vglut2-flox

 mice over 10 

min during photostimulation to assess the contribution of glutamate release to anxiety-like 
behaviour (

G

). Significance (

p

 < 0.05) was determined using a two-way mixed-effect ANOVA 

with Bonferroni post-hoc testing: * 

p

 < 0.05, ** 

p

 <0.01. 

 

4.5  

Discussion 

The LS receives strong innervation from MCH neurons where both glutamate and MCH can 

regulate LS cells, however the role of MCH and glutamate in this circuit is poorly understood. 

Here we showed that glutamate and MCH release may occur from distinct sites and act on 

separate populations of LS cells. As a result, 

in vivo

 release of glutamate and MCH within this 

circuit led to different behavioural outcomes. Photostimulation of MCH terminals within the LS 

increased feeding through a glutamate-dependent mechanism. By contrast, net activation of 

MCH terminals had no effect on anxiety-like behaviour, but in the absence of glutamate 

transmission, MCH had an anxiolytic effect.  

Consistent with the orexigenic effects of MCH neuron activation (Noble et al., 2018; 

Dilsiz et al., 2020; Subramanian et al., 2023) we observed that photostimulation of MCH neuron 

terminals in the LS increased feeding, but surprisingly, this orexigenic effect was not blocked by 

pretreatment with an MCHR1 antagonist. Instead, the increased feeding driven by activation of 

nerve terminals from MCH neurons was abolished in mice lacking glutamate release from MCH 

neurons. This finding suggested that the increased food consumption is mediated by glutamate 

release. Since inhibition of the LS has been shown to increase feeding (Mitra et al., 2014; 

Gabriella et al., 2022), this effect may be caused by glutamate-dependent feedforward inhibition 

of LS cells that occurs with activation of MCH neuron terminals in the LS (Chee et al., 2015). 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

139 

 

MCH release would also be expected to produce hyperphagia based on previous studies that have 

activated MCH neurons (Noble et al., 2018), but it is possible that the orexigenic effects of 

optogenetically-evoked MCH release within the LS may require a longer time course and were 

undetected within the one hour measurement here.  

The LS is a key regulator of anxiety-like behaviours and inhibition of the LS produces 

anxiolytic outcomes (Pesold and Treit, 1996; Bakshi et al., 2007). Photostimulation of nerve 

terminals from MCH cells in the LS did not elicit a net effect on anxiety-like behaviour. 

However, when glutamate release was disabled, photostimulating nerve terminals from MCH 

cells elicited more exploration in the open field; this exploratory effect was abolished by 

pretreatment with a MCHR1 antagonist. These findings suggested that optogenetically-evoked 

MCH release in the LS mediated anxiolytic outcomes. Although MCH is often thought to be 

anxiogenic (Smith et al., 2006; He et al., 2022) it can have site-specific anxiolytic effects 

(Monzon et al., 2001; Oh et al., 2020; Beekly et al., 2023), such as at the LS. We isolated the 

effects of glutamate by photostimulating MCH nerve terminals within the LS in the presence of a 

MCHR1 antagonist, but in contrast to previous studies that have shown an anxiogenic role for 

glutamate in MCH neurons (Sankhe et al., 2023), we did not observe a direct effect of glutamate 

release on anxiety-like behaviour. As the anxiolytic effects of MCH were detected only in the 

absence of glutamatergic signaling from MCH cells, we posit that glutamatergic signaling may 

mask the actions of MCH. 

The anxiolytic effect of MCH provides evidence of endogenous MCH release in the LS 

and this was confirmed in acute brain slices. Prolonged, high-frequency stimulation of MCH 

terminals in the LS evoked MCH release and hyperpolarized LS neurons. We observed a 

hyperpolarization of ventrolateral LS cells that began approximately two minutes following the 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

140 

 

start of photostimulation with the peak effect occurring between three and four minutes. This 

hyperpolarization persisted after the light was turned off consistent with the long-lasting effects 

of optogenetically-evoked neuropeptides like orexin (Schone et al., 2014) and vasopressin 

(Gizowski et al., 2016). Moreover, the time course and amplitude of this effect is consistent with 

bath application of MCH to LS cells which was also blocked by application of TC-MCH 7c. 

Glutamate release from MCH neurons can also inhibit LS cells, however this occurs within 

seconds of the onset of photostimulation (Chee et al., 2015) and the strength of glutamatergic 

input decreases rapidly with 10 Hz stimulation (Liu et al., 2022). Thus, glutamate would not be 

expected to contribute significantly to a prolonged effect. Moreover, we performed the 

photostimulation in the presence of kynurenic acid to block feedforward inhibition (Chee et al., 

2015) and isolate the effects of MCH. Optogenetically-evoked MCH release produces a delayed 

inhibition of dorsal LS cells through presynaptic activation of GABAergic input (Liu et al., 

2022), however, given the location of responsive cells and timing of the hyperpolarization, the 

MCH-mediated hyperpolarization reported here is more consistent with a postsynaptic 

mechanism described in Payant et al. (2023). Together these findings suggested that the MCH 

terminals within the LS are a functional source of MCH within the brain and MCH can be 

released to inhibit LS cells through intercellular transmission.  

By pairing optogenetic activation of MCH terminals in the LS with a puff application of 

MCH, we revealed that most LS cells directly innervated by nerve terminals from MCH neurons 

are not MCH-sensitive. As previously reported (Chee et al., 2015; Liu et al., 2022), about one-

third of LS cells were innervated by glutamate release from MCH terminals and feedforward 

GABA release. We also detected separate LS cells that were inhibited by puff application of 

MCH and were not innervated by glutamate release. We report a smaller percentage of MCH-

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

141 

 

sensitive cells compared to Payant et al., (2023) but this is likely due to recording in more 

anterior slices where there are less MCHR1-expressing cells. MCH-sensitive and glutamate-

innervated cell populations were largely distinct, but there was a rare subset of LS cells that were 

inhibited through a puff of MCH and directly innervated by MCH terminals. The distribution of 

connected and MCH responsive cells was consistent with the expression of channelrhodopsin 

fibers in the more anterior slice and MCHR1 receptors in the lateral part of the more posterior 

slice. Together, this suggested that MCH and glutamate predominantly have distinct targets 

within the LS.  

The dissimilar distributions of MCH neuron terminals and MCH-ir fibers suggested 

different release sites of glutamate and MCH which aligns with known mechanisms of 

neurotransmitter and neuropeptide release. While neurotransmitter release is restricted to a 

synapse, neuropeptides can be released from all parts of a neuron, including along the axon (Zhu 

et al., 1986; Morris and Pow, 1991). Consistent with Chee et al. (2015), we found that 

synaptophysin-expressing MCH neuron terminals have a distinct cluster in the dorsal part of the 

LS in more anterior levels, an area devoid of MCH fibers, but in more posterior slices, 

synaptophysin is more evenly distributed in the lateral part of the LS and overlaps with MCH 

fibers (Payant et al., 2023). This suggested that there is little MCH present at most neuron 

terminals but MCH may be present at some nerve terminals in the lateral LS corresponding with 

the small percentage of MCH fibers that form appositions on LS neurons (Payant et al., 2023). 

Based on this anatomical evidence, we can hypothesize that as MCH-expressing axons travel 

rostrally through the LS, MCH may be released along the axon in the ventrolateral LS while the 

axons terminate in the anterior and dorsal LS. We must also consider that the MCH antibody was 

not sensitive enough to detect MCH at nerve terminals and therefore our results may 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

142 

 

underrepresent the overlapping expression of MCH with synaptophysin-terminal expression. 

Higher resolution analysis such as with electron microscopy would be necessary to more 

concretely resolve whether MCH is present at nerve terminals. 

A comprehensive understanding of how MCH neurons regulate the LS would also need 

to consider additional peptides produced by MCH neurons. Retrograde tracing revealed that cells 

within the medial cluster of MCH neurons (Miller et al., 2023) projected to the LS. Medial MCH 

neurons have been shown to co-express the peptide cocaine- and amphetamine-regulated 

transcript (CART; Broberger, 1999; Croizier et al., 2010; Miller et al., 2023), and CART 

immunoreactive fibers have been found in the LS (Janzso et al., 2010). This suggests that MCH 

neurons may also release CART to regulate LS activity. CART has been shown to have both 

orexigenic (Abbott et al., 2001) and anorexigenic (Kristensen et al., 1998) actions, therefore 

while the actions of CART in the LS are unknown it may also contribute to the orexigenic effects 

of this circuit.  

In conclusion, MCH and glutamate release from MCH neurons may have different effects 

on behaviour through action on separate populations of cells within the LS. These findings 

highlight the importance of considering diverging actions of neurotransmitter and neuropeptide 

release and as such future studies may also consider the role of additional peptides produced by 

MCH cells.  

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

143 

 

4.6  

References 

Abbott CR, Rossi M, Wren AM, Murphy KG, Kennedy AR, Stanley SA, Zollner AN, Morgan 

DG, Morgan I, Ghatei MA, Small CJ, Bloom SR (2001) Evidence of an orexigenic role for 
cocaine- and amphetamine-regulated transcript after administration into discrete hypothalamic 
nuclei. Endocrinology 142:3457-3463. 

Bakshi VP, Newman SM, Smith-Roe S, Jochman KA, Kalin NH (2007) Stimulation of lateral 

septum CRF2 receptors promotes anorexia and stress-like behaviors: functional homology to 
CRF1 receptors in basolateral amygdala. J Neurosci 27:10568-10577. 

Beekly BG, Rupp A, Burgess CR, Elias CF (2023) Fast neurotransmitter identity of MCH 

neurons: Do contents depend on context? Front Neuroendocrinol 70:101069. 

Bono BS, Koziel Ly NK, Miller PA, Williams-Ikhenoba J, Dumiaty Y, Chee MJ (2022) Spatial 

distribution of beta-klotho mRNA in the mouse hypothalamus, hippocampal region, 
subiculum, and amygdala. J Comp Neurol 530:1634-1657. 

Broberger C (1999) Hypothalamic cocaine- and amphetamine-regulated transcript (CART) 

neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating 
hormone, orexin/hypocretin and neuropeptide Y. Brain Res 848:101-113. 

Chee MJ, Pissios P, Maratos-Flier E (2013) Neurochemical characterization of neurons 

expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. J Comp 
Neurol 521:2208-2234. 

Chee MJ, Arrigoni E, Maratos-Flier E (2015) Melanin-concentrating hormone neurons release 

glutamate for feedforward inhibition of the lateral septum. J Neurosci 35:3644-3651. 

Croizier S, Franchi-Bernard G, Colard C, Poncet F, La Roche A, Risold PY (2010) A 

comparative analysis shows morphofunctional differences between the rat and mouse 
melanin-concentrating hormone systems. PLoS One 5:e15471. 

Davis CJ, Vanderheyden WM (2020) Optogenetic sleep enhancement improves fear-associated 

memory processing following trauma exposure in rats. Sci Rep 10:18025. 

Dilsiz P, Aklan I, Sayar Atasoy N, Yavuz Y, Filiz G, Koksalar F, Ates T, Oncul M, Coban I, 

Ates Oz E, Cebecioglu U, Alp MI, Yilmaz B, Atasoy D (2020) MCH Neuron Activity Is 
Sufficient for Reward and Reinforces Feeding. Neuroendocrinology 110:258-270. 

Dong H (2008) The Allen reference atlas: A digital color brain atlas of the C57BL/6J male 

mouse. . Hoboken, NJ: John Wiley & Sons. 

Drugan RC, Skolnick P, Paul SM, Crawley JN (1986) Low doses of muscimol produce 

anticonflict actions in the lateral septum of the rat. Neuropharmacology 25:203-205. 

Elias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J, Tatro JB, Hoffman GE, 

Ollmann MM, Barsh GS, Sakurai T, Yanagisawa M, Elmquist JK (1998) Chemically defined 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

144 

 

projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp 
Neurol 402:442-459. 

Gabriella I, Tseng A, Sanchez KO, Shah H, Stanley BG (2022) Stimulation of GABA Receptors 

in the Lateral Septum Rapidly Elicits Food Intake and Mediates Natural Feeding. Brain Sci 
12. 

Gizowski C, Zaelzer C, Bourque CW (2016) Clock-driven vasopressin neurotransmission 

mediates anticipatory thirst prior to sleep. Nature 537:685-688. 

Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a 

reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A 
106:2418-2422. 

He X, Li Y, Zhang N, Huang J, Ming X, Guo R, Hu Y, Ji P, Guo F (2022) Melanin-

concentrating hormone promotes anxiety and intestinal dysfunction via basolateral amygdala 
in mice. Front Pharmacol 13:906057. 

Hokfelt T (1991) Neuropeptides in perspective: the last ten years. Neuron 7:867-879. 

Janzso G, Valcz G, Thuma A, Szoke B, Lendvai Z, Abraham H, Kozicz T, Halasy K (2010) 

Cocaine- and amphetamine-regulated transcript (CART) peptide-immunopositive neuronal 
elements in the lateral septum: rostrocaudal distribution in the male rat. Brain Res 1362:40-
47. 

Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, 

Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory 
circuit in the hypothalamus. Nat Neurosci 16:1637-1643. 

Kong D, Vong L, Parton LE, Ye C, Tong Q, Hu X, Choi B, Bruning JC, Lowell BB (2010) 

Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated 
by UCP2, and regulates peripheral glucose homeostasis. Cell Metab 12:545-552. 

Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, 

Madsen OD, Vrang N, Larsen PJ, Hastrup S (1998) Hypothalamic CART is a new anorectic 
peptide regulated by leptin. Nature 393:72-76. 

Lamontagne SJ, Olmstead MC, Menard JL (2016) The lateral septum and anterior hypothalamus 

act in tandem to regulate burying in the shock-probe test but not open-arm avoidance in the 
elevated plus-maze. Behav Brain Res 314:16-20. 

Liu JJ, Tsien RW, Pang ZP (2022) Hypothalamic melanin-concentrating hormone regulates 

hippocampus-dorsolateral septum activity. Nat Neurosci 25:61-71. 

Merighi A (2002) Costorage and coexistence of neuropeptides in the mammalian CNS. Prog 

Neurobiol 66:161-190. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

145 

 

Miller PA, Williams-Ikhenoba J, Sankhe AS, Hoffe BH, Chee MJ (2023) Neuroanatomical, 

electrophysiological, and morphological characterization of melanin-concentrating hormone 
cells coexpressing cocaine- and amphetamine-regulated transcript. bioRxiv. 

Mitra A, Lenglos C, Timofeeva E (2014) Activation of GABAA and GABAB receptors in the 

lateral septum increases sucrose intake by differential stimulation of sucrose licking activity. 
Behav Brain Res 273:82-88. 

Monzon ME, Varas MM, De Barioglio SR (2001) Anxiogenesis induced by nitric oxide synthase 

inhibition and anxiolytic effect of melanin-concentrating hormone (MCH) in rat brain. 
Peptides 22:1043-1047. 

Morris JF, Pow DV (1991) Widespread release of peptides in the central nervous system: 

quantitation of tannic acid-captured exocytoses. Anat Rec 231:437-445. 

Naganuma F, Bandaru SS, Absi G, Chee MJ, Vetrivelan R (2019) Melanin-concentrating 

hormone neurons promote rapid eye movement sleep independent of glutamate release. Brain 
Struct Funct 224:99-110. 

Negishi K, Payant MA, Schumacker KS, Wittmann G, Butler RM, Lechan RM, Steinbusch 

HWM, Khan AM, Chee MJ (2020) Distributions of hypothalamic neuron populations 
coexpressing tyrosine hydroxylase and the vesicular GABA transporter in the mouse. J Comp 
Neurol 528:1833-1855. 

Noble EE, Hahn JD, Konanur VR, Hsu TM, Page SJ, Cortella AM, Liu CM, Song MY, Suarez 

AN, Szujewski CC, Rider D, Clarke JE, Darvas M, Appleyard SM, Kanoski SE (2018) 
Control of Feeding Behavior by Cerebral Ventricular Volume Transmission of Melanin-
Concentrating Hormone. Cell Metab 28:55-68 e57. 

Oh JY, Liu QF, Hua C, Jeong HJ, Jang JH, Jeon S, Park HJ (2020) Intranasal Administration of 

Melanin-Concentrating Hormone Reduces Stress-Induced Anxiety- and Depressive-Like 
Behaviors in Rodents. Exp Neurobiol 29:453-469. 

Paxinos G, Franklin K (2001) The Mouse Brain in Stereotaxic Coordinates. San Diego, CA: 

Academic Press. 

Payant MA, Spencer CD, Chee MJ (2023) Inhibitory actions of melanin-concentrating hormone 

in the lateral septum. bioRxiv. 

Pesold C, Treit D (1996) The neuroanatomical specificity of the anxiolytic effects of intra-septal 

infusions of midazolam. Brain Res 710:161-168. 

Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, 

Przypek R, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in 
the central regulation of feeding behaviour. Nature 380:243-247. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

146 

 

Sankhe AS, Bordeleau D, Alfonso DIM, Wittman G, Chee MJ (2023) Loss of glutamatergic 

signalling from MCH neurons reduced anxiety-like behaviours in novel environments. J 
Neuroendocrinol 35:e13222. 

Schneeberger M, Tan K, Nectow AR, Parolari L, Caglar C, Azevedo E, Li Z, Domingos A, 

Friedman JM (2018) Functional analysis reveals differential effects of glutamate and MCH 
neuropeptide in MCH neurons. Mol Metab 13:83-89. 

Schone C, Apergis-Schoute J, Sakurai T, Adamantidis A, Burdakov D (2014) Coreleased orexin 

and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell 
Rep 7:697-704. 

Smith DG, Davis RJ, Rorick-Kehn L, Morin M, Witkin JM, McKinzie DL, Nomikos GG, 

Gehlert DR (2006) Melanin-concentrating hormone-1 receptor modulates neuroendocrine, 
behavioral, and corticolimbic neurochemical stress responses in mice. 
Neuropsychopharmacology 31:1135-1145. 

Sparta DR, Stamatakis AM, Phillips JL, Hovelso N, van Zessen R, Stuber GD (2011) 

Construction of implantable optical fibers for long-term optogenetic manipulation of neural 
circuits. Nat Protoc 7:12-23. 

Subramanian KS, Lauer LT, Hayes AMR, Decarie-Spain L, McBurnett K, Nourbash AC, 

Donohue KN, Kao AE, Bashaw AG, Burdakov D, Noble EE, Schier LA, Kanoski SE (2023) 
Hypothalamic melanin-concentrating hormone neurons integrate food-motivated appetitive 
and consummatory processes in rats. Nat Commun 14:1755. 

Sweeney P, Yang Y (2016) An Inhibitory Septum to Lateral Hypothalamus Circuit That 

Suppresses Feeding. J Neurosci 36:11185-11195. 

Terrill SJ, Subramanian KS, Lan R, Liu CM, Cortella AM, Noble EE, Kanoski SE (2020) 

Nucleus accumbens melanin-concentrating hormone signaling promotes feeding in a sex-
specific manner. Neuropharmacology 178:108270. 

van den Pol AN (2012) Neuropeptide transmission in brain circuits. Neuron 76:98-115. 

Zhu PC, Thureson-Klein A, Klein RL (1986) Exocytosis from large dense cored vesicles outside 

the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible 
mechanism for neuropeptide release. Neuroscience 19:43-54. 

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

147 

 

4.7  

Supporting figures 

 

Supporting figure 1. MCH viral transduction decreased over time. 

Percent of MCH neurons 

in the lateral hypothalamus that co-expressed native mCherry following injection with a Cre-
dependent virus encoding channelrhodopsin (ChR2)-mCherry in 

Pmch-cre

 mice. A significant 

negative correlation between colocalization and time in weeks following viral injection was 
observed.  

Supporting figure 2. Lack of viral transduction in wildtype brain. 

Confocal photomicrograph 

of the lateral hypothalamus showing no native mCherry expression following injection with a 
Cre-dependent virus encoding channelrhodopsin (ChR2)-mCherry in a WT brain. Scale bar: 100 
µm. fx, fornix; opt, optic tract; V3, third ventricle.  

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

148 

 

Chapter 5: Integrated Discussion 

5.1  

Summary  

MCH has many diverse functions that are mediated through a widespread distribution of 

projections and receptors in the brain (Bittencourt et al., 1992; Saito et al., 2001; Chee et al., 

2013). The strongest output of MCH neurons is to the LS where MCH terminals release 

glutamate and drive feedforward inhibition of LS cells (Chee et al., 2015), however very little is 

known about the function of MCH in this region. The LS is an emergent structure in the 

regulation of feeding behaviour (Mitra et al., 2014; Chen et al., 2022; Gabriella et al., 2022), 

therefore the LS may be a region underlying the orexigenic actions of MCH. This thesis aimed to 

determine the function of MCH in the LS by characterizing the actions of MCH on a cellular, 

circuit, and behavioural level. We discovered that MCH acted through a novel mechanism to 

inhibit LS activity (Chapter 1) and drive feeding in male and female mice (Chapter 2). Moreover, 

MCH and glutamate acted on separate cells to reduce anxiety-like behaviour and promote food 

intake (Chapter 3), respectively, which may support an overall orexigenic function of this circuit.  

5.2  

Local MCH release inhibited LS cells  

MCH fibers and MCHR1-expressing cells overlapped within the ventral and lateral part of the 

LS, thus revealing a hotspot for MCH action in the LS. Pharmacological application of MCH 

inhibited LS cells within this region through direct postsynaptic MCHR1 activation. MCHR1 

activation can couple to G

i

, G

q

, or G

s

-protein mediated pathways in primary culture (Bachner et 

al., 1999; Hawes et al., 2000; Pissios et al., 2003), but in brain slices, MCH has only been shown 

to exert inhibitory actions via G

i

-protein mediated pathways (Wu et al., 2009; Sears et al., 2010). 

We showed that the MCH-mediated inhibition was PKC-dependent and activated GABA

A

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

149 

 

receptors to increase the chloride conductance. This finding supplied 

in situ 

evidence for 

MCHR1 activation via G

q

-mediated signaling pathways and represents a novel mechanism of 

MCH action in the brain (Chapter 1).  

MCH-ir fibers were in close proximity to, but not in direct contact with, MCHR1-

expressing cells in the ventrolateral LS. This suggested that MCH may be released and then 

diffused through the extracellular space to act on nearby targets. MCHR1 expression on the 

primary cilium of the LS cell also supports the ability of these cells to detect peptides in the 

extracellular fluid (Pazour and Witman, 2003). We optogenetically activated MCH terminals and 

using a high frequency light pulse train sustained over 5 min, we detected evidence for MCH 

release from MCH fiber projections in the LS. This photostimulation protocol induced a 

reversible membrane hyperpolarization that mirrored that elicited by the bath application of 

MCH. This finding suggested that MCH fibers comprise a local source of MCH within the LS 

(Chapter 3). Furthermore, MCHR1-expressing LS cells adjacent to the lateral ventricle are 

poised to detect MCH and respond to reabsorption of MCH from the cerebrospinal fluid (Noble 

et al., 2018). While light-evoked MCH release was consistent with the time course of local 

peptide release (Muschol and Salzberg, 2000; Schone et al., 2014; Gizowski et al., 2016), 

ventricular transmission may represent an additional way that MCH could regulate the LS.  

It is also intriguing to consider that while the majority of MCH-responsive cells were not 

innervated by MCH nerve terminals, MCH fibers formed direct appositions on the cilia or soma 

of a small subset of MCHR1-expressing LS cells. This alludes to the possibility that MCH can 

reach the postsynaptic LS cell in a targeted manner without diffusion or volume transmission. 

Taken together, the acute inhibition of LS cells by direct MCH release at the LS cell or from the 

extracellular space may be prolonged by MCH reabsorption from the ventricle. 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

150 

 

5.3  

Differential MCH and glutamate targets and function in the LS  

We posit that there are three subpopulations of LS cells relevant to the MCH system (

Figure 1

): 

those that are responsive to both glutamate (released from MCH nerve terminals) and MCH 

(

Population 1

), those that are innervated by glutamate release only (

Population 2

), and those that 

are MCH-responsive but not innervated by MCH nerve terminals (

Population 3

). These findings 

suggested that glutamate and MCH act primarily on different target LS cells, and these cell 

targets may be functionally differentiated, such as for feeding or anxiety-related behaviour. 

Whereas glutamate may rapidly engage one population, MCH may have a modulatory role to 

allow for fine tuning of the output from this circuit.  

5.3.1 Orexigenic effects of MCH and glutamate in the LS  

MCH infusion in the LS robustly stimulated the consumption of a chow or palatable diet. 

Importantly, this orexigenic effect at the LS was comparable in both male and female mice, 

which is unique from the orexigenic effect of MCH at other target sites like that nucleus 

accumbens that are seen in males but not females (Chapter 2).  

Optogenetic activation of MCH fibers within the LS of freely-behaving mice also 

stimulated feeding in male and female mice (Chapter 3). Interestingly, this orexigenic effect was 

independent of MCHR1 activation, as stimulated feeding was not abolished by a MCHR1 

antagonist. Although the orexigenic effects of MCH were not detected in this experiment, it is 

possible that prolonged stimulation or food measurement would be required to detect MCH-

mediated hyperphagia 

in vivo

. The orexigenic effect seen with MCH fiber photostimulation was 

attributed to glutamate release, as it was absent by disabling glutamate following 

Vglut2

 deletion 

at MCH cells. Glutamate release from MCH fibers elicits feedforward inhibition of LS cells 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

151 

 

(Chee et al., 2015), which is associated with increased food intake (Mitra et al., 2014; Gabriella 

et al., 2022). 

 

5.3.2 Anxiolytic effect of MCH in the LS

 

MCH action is reputed to produce anxiogenic outcomes (Roy et al., 2006; Smith et al., 2006; He 

et al., 2022). However, MCH inhibited LS cells, and inhibiting LS output exerts an anxiolytic 

effect (Drugan et al., 1986; Pesold and Treit, 1996).  Indeed, optogenetic photostimulation of 

MCH release in the LS unmasked the anxiolytic effect of MCH, but the anxiolytic MCH effects 

were detected only following the loss of glutamate release from the same MCH neurons (Chapter 

3). Interestingly, glutamatergic transmission alone did not have independent effects on anxiety-

like behaviour. This suggested that glutamate and MCH do not necessarily have opposing effects 

on anxiety but that glutamate may be masking the anxiolytic effects of MCH. An anxiolytic 

effect of MCH appears contradictory to studies that have found an anxiogenic function of MCH 

(Roy et al., 2006; Smith et al., 2006; He et al., 2022). However, in the LS circuit, anxiolytic 

MCH action may serve to further promote feeding.  

5.4  

Proposed model of MCH action in the LS 

Through a combination of pharmacological and transgenic techniques to assess the contribution 

of both MCH and glutamate release from MCH terminals, we were able to build upon previous 

studies that examined these messengers separately (Chee et al., 2015; Noble et al., 2018; Liu et 

al., 2022). Here, we propose a model for MCH- and glutamate-mediated regulation of feeding 

and anxiety-like behaviour through the three subpopulations of MCH- and/or glutamate-sensitive 

LS cells (

Figure 1

).  

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

152 

 

 

Figure 1. Proposed circuitry underlying MCH regulation of feeding and anxiety-like 
behaviour through the LS.  

Population 1.

 In cells that are connected but MCH-insensitive, glutamate release would drive 

feedforward inhibition of LS cells, resulting in the inhibition of LS output and disinhibition of a 
downstream region that can drive feeding.  

Population 2.

 In MCH-sensitive cells, MCH administration or release from local MCH 

terminals, may have delayed effects by inhibiting MCH sensitive cells, further disinhibiting the 
target site, and promoting overconsumption.  

Population 3.

 In cells that are both connected and MCH-sensitive, activation of MCH neurons 

may simultaneously activate the postsynaptic cell through glutamate release and inhibit the cell 
through MCH release. This may lead to no net change in output of the LS and therefore no 
change to anxiety-like behaviour. In a transgenic mouse model that disabled glutamate release 
from MCH neurons (

Pmch-cre;Vglut2-flox

), excitatory input from glutamate is removed, thus 

allowing MCH to inhibit the LS cell and disinhibit a downstream anxiolytic region resulting in 
decreased anxiety-like behaviour. 

In sum, activation of MCH input to the LS may fine tune LS output through several mechanisms 
to increase feeding behaviour.   

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

153 

 

5.5  

Conclusion 

Taken together, this research characterized the actions of MCH in the LS to advance our 

understanding of how regulation of feeding behaviour can occur at a cellular and circuit level. 

This work improves our knowledge of MCH by identifying an important region underlying the 

orexigenic effects of MCH and contributes to our overall understanding of feeding behaviour. In 

addition to MCH and glutamate, future studies may examine the contribution of other co-

expressed neuropeptides, such as CART, to this circuit and identify specific contexts where these 

interacting effects on feeding and anxiety may be important.  

 

 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

154 

 

5.6  

References 

Bachner D, Kreienkamp H, Weise C, Buck F, Richter D (1999) Identification of melanin 

concentrating hormone (MCH) as the natural ligand for the orphan somatostatin-like receptor 
1 (SLC-1). FEBS Lett 457:522-524. 

Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) 

The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization 
histochemical characterization. J Comp Neurol 319:218-245. 

Chee MJ, Pissios P, Maratos-Flier E (2013) Neurochemical characterization of neurons 

expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. J Comp 
Neurol 521:2208-2234. 

Chee MJ, Arrigoni E, Maratos-Flier E (2015) Melanin-concentrating hormone neurons release 

glutamate for feedforward inhibition of the lateral septum. J Neurosci 35:3644-3651. 

Chen Z, Chen G, Zhong J, Jiang S, Lai S, Xu H, Deng X, Li F, Lu S, Zhou K, Li C, Liu Z, Zhang 

X, Zhu Y (2022) A circuit from lateral septum neurotensin neurons to tuberal nucleus controls 
hedonic feeding. Mol Psychiatry 27:4843-4860. 

Drugan RC, Skolnick P, Paul SM, Crawley JN (1986) Low doses of muscimol produce 

anticonflict actions in the lateral septum of the rat. Neuropharmacology 25:203-205. 

Gabriella I, Tseng A, Sanchez KO, Shah H, Stanley BG (2022) Stimulation of GABA Receptors 

in the Lateral Septum Rapidly Elicits Food Intake and Mediates Natural Feeding. Brain Sci 
12. 

Gizowski C, Zaelzer C, Bourque CW (2016) Clock-driven vasopressin neurotransmission 

mediates anticipatory thirst prior to sleep. Nature 537:685-688. 

Hawes BE, Kil E, Green B, O'Neill K, Fried S, Graziano MP (2000) The melanin-concentrating 

hormone receptor couples to multiple G proteins to activate diverse intracellular signaling 
pathways. Endocrinology 141:4524-4532. 

He X, Li Y, Zhang N, Huang J, Ming X, Guo R, Hu Y, Ji P, Guo F (2022) Melanin-

concentrating hormone promotes anxiety and intestinal dysfunction via basolateral amygdala 
in mice. Front Pharmacol 13:906057. 

Liu JJ, Tsien RW, Pang ZP (2022) Hypothalamic melanin-concentrating hormone regulates 

hippocampus-dorsolateral septum activity. Nat Neurosci 25:61-71. 

Mitra A, Lenglos C, Timofeeva E (2014) Activation of GABAA and GABAB receptors in the 

lateral septum increases sucrose intake by differential stimulation of sucrose licking activity. 
Behav Brain Res 273:82-88. 

Muschol M, Salzberg BM (2000) Dependence of transient and residual calcium dynamics on 

action-potential patterning during neuropeptide secretion. J Neurosci 20:6773-6780. 

Noble EE, Hahn JD, Konanur VR, Hsu TM, Page SJ, Cortella AM, Liu CM, Song MY, Suarez 

AN, Szujewski CC, Rider D, Clarke JE, Darvas M, Appleyard SM, Kanoski SE (2018) 

payant--mikayla-ann--cellular-and-functional-role-of-melaninconcentrating-hormone-in-the-lateral-septum-html.html
background image

155 

 

Control of Feeding Behavior by Cerebral Ventricular Volume Transmission of Melanin-
Concentrating Hormone. Cell Metab 28:55-68 e57. 

Pazour GJ, Witman GB (2003) The vertebrate primary cilium is a sensory organelle. Curr Opin 

Cell Biol 15:105-110. 

Pesold C, Treit D (1996) The neuroanatomical specificity of the anxiolytic effects of intra-septal 

infusions of midazolam. Brain Res 710:161-168. 

Pissios P, Trombly DJ, Tzameli I, Maratos-Flier E (2003) Melanin-concentrating hormone 

receptor 1 activates extracellular signal-regulated kinase and synergizes with G(s)-coupled 
pathways. Endocrinology 144:3514-3523. 

Roy M, David NK, Danao JV, Baribault H, Tian H, Giorgetti M (2006) Genetic inactivation of 

melanin-concentrating hormone receptor subtype 1 (MCHR1) in mice exerts anxiolytic-like 
behavioral effects. Neuropsychopharmacology 31:112-120. 

Saito Y, Cheng M, Leslie FM, Civelli O (2001) Expression of the melanin-concentrating 

hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol 435:26-40. 

Schone C, Apergis-Schoute J, Sakurai T, Adamantidis A, Burdakov D (2014) Coreleased orexin 

and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell 
Rep 7:697-704. 

Sears RM, Liu RJ, Narayanan NS, Sharf R, Yeckel MF, Laubach M, Aghajanian GK, DiLeone 

RJ (2010) Regulation of nucleus accumbens activity by the hypothalamic neuropeptide 
melanin-concentrating hormone. J Neurosci 30:8263-8273. 

Smith DG, Davis RJ, Rorick-Kehn L, Morin M, Witkin JM, McKinzie DL, Nomikos GG, 

Gehlert DR (2006) Melanin-concentrating hormone-1 receptor modulates neuroendocrine, 
behavioral, and corticolimbic neurochemical stress responses in mice. 
Neuropsychopharmacology 31:1135-1145. 

Wu M, Dumalska I, Morozova E, van den Pol A, Alreja M (2009) Melanin-concentrating 

hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy 
balance to reproduction. Proc Natl Acad Sci U S A 106:17217-17222.